Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
2) Площадь по формуле Герона. S = √(p(p-a)(p-b)(p-c). Подставив данные, получаем: Треугольник АВС a(ВС) b(АС) c(АВ) p 2p S 6,4807 10,7703 6,4807 11,8659 23,7318 19,4165 cos A = 0,830949 cos B = -0,3809523 cos С = 0,830949 Аrad = 0,5899851 Brad = 1,961622457 Сrad = 0,5899851 Аgr = 33,8036561 Bgr = 112,3926878 Сgr = 33,803656/ Площадь равна 19,4165 кв.ед.