КН = 1/2 АС и КН║АС как средняя линия ΔАВС,
ТМ = 1/2 АС и ТМ║АС как средняя линия ΔADC,
КНМТ - параллелограмм по признаку (противолежащие стороны равны и параллельны).
Аналогично, НМ = 1/2 BD и КТ = 1/2 BD как средние линии треугольников CBD и ABD.
В равнобедренной трапеции диагонали равны, значит равны и стороны параллелограмма КНМТ, значит это ромб.
Skhmt = 1/2 KM · HT
Отрезок, соединяющий середины оснований равнобедренной трапеции, перпендикулярен основаниям, значит НТ - высота трапеции.
КМ - средняя линия трапеции по определению.
KM = (AD + BC)/2
Sabcd = (AD + BC) /2 · HT = KM · HT = 40 см²
Skhmt = 1/2 Sabcd = 1/2 · 40 = 20 см²
вот но в синусах
AC/sin45=AB/sin60
AB=AC*sin60/sin45=46,8*(√3/2)/(√2/2)=23,4√6
ответ: AB= 23,4√6 см
По теореме синусов
Объяснение: