Теорема 1 (теорема Фалеса). Параллельные прямые высекают на пересекающих их прямых пропорциональные отрезки (рис. 1).
Определение 1. Два треугольника (рис. 2) называются подобными, если соответствующие стороны у них пропорциональны.
Теорема 2 (первый признак подобия). Если угол первого треугольника равен углу второго треугольника, а прилежащие к этим углам стороны треугольников пропорциональны, то такие треугольники подобны (см. рис. 2).
Теорема 3 (второй признак подобия). Если два угла одного треугольника равны соответственно двум углам другого треугольника, то такие треугольники подобны (рис. 3).
Это?
Если она поделила сторону NK на 3 и 4, то сторона NK = BD = 3+4.
Теперь рассмотрим треугольник BNF, которые образовала биссектриса BF. У него угол N = 90 ⁰, то есть он прямоугольный. Также угол ∠NBF = 45⁰, а так как сумма углов треугольника равна 180⁰, то ∠BFN = 180 - 90 - 45 = 45⁰!
Так как мы получили, что углы в этом треугольнике равны, то и стороны равны! То есть NF = BN = 3
Отсюда периметр P = 2NK + 2BN = 14+6 = 20
ответ: P(BDNK) = 20