При пересечении двух прямых образуются только углы двух видов: смежные и вертикальные.
Перпендикулярные прямые рассматривать смысла нет: все углы по 90° и условие не выполняется, поэтому есть 2 тупых и 2 острых угла.
У смежных углов сумма равна 180°.
То есть даже на примере:
∠1 смежен с ∠3 и ∠4, то есть ∠1+∠3=180°, ∠1+∠4=180°
Аналогично ∠2 смежен с теми же углами. И ∠1=∠2.
И это явно не могут быть 2 тупых угла, так как они как вертикальные равны между собой, но если ∠3+∠4=140° и ∠3=∠4, то ∠3=∠4=70°, а они тупые, то есть такого быть не может. Поэтому это могут быть только ∠1 и ∠2, которые равны по 70° и являются друг для друга вертикальными.
Что и требовалось доказать.
При пересечении двух прямых образуются только углы двух видов: смежные и вертикальные.
Перпендикулярные прямые рассматривать смысла нет: все углы по 90° и условие не выполняется, поэтому есть 2 тупых и 2 острых угла.
У смежных углов сумма равна 180°.
То есть даже на примере:
∠1 смежен с ∠3 и ∠4, то есть ∠1+∠3=180°, ∠1+∠4=180°
Аналогично ∠2 смежен с теми же углами. И ∠1=∠2.
И это явно не могут быть 2 тупых угла, так как они как вертикальные равны между собой, но если ∠3+∠4=140° и ∠3=∠4, то ∠3=∠4=70°, а они тупые, то есть такого быть не может. Поэтому это могут быть только ∠1 и ∠2, которые равны по 70° и являются друг для друга вертикальными.
Что и требовалось доказать.
Відповідь:
Пусть данная пирамида будет МАВС, а сечение её плоскостью - АВТ.
МТ:ТС=7:8
Плоскость разбила исходную пирамиду на две с общим основанием АВТ и вершинами С - в нижней и М- в верхней.
Проведем в плоскости сечения прямую ТН, а из вершин образовавшихся пирамид их высоты СК и МЕ перпендикулярно к этой прямой, лежащей в плоскости сечения, а значит и перпендикулярно плоскости их общего основания.
Треугольники МЕТ и СТК прямоугольные с равными острыми углами МТЕ=СТК - они вертикальные.
Следовательно, эти треугольники подобны, и отношение их высот равно отношению их сторон, т.е.
МЕ:СК=МТ:СТ=7:8
Объем пирамиды равен 1/3 произведения её высоты на площадь основания.
Основание у обеих пирамид общее, следовательно, их объемы относятся как 7:8
Содержание одной части этого отношения равно 30:(7+8)=2
Объем пирамид с равным основанием больше у той, чья высота больше.
V САВТ=2*8=16 (ед. объема)
Пояснення:
Пусть данная пирамида будет МАВС, а сечение её плоскостью - АВТ.
МТ:ТС=7:8
Плоскость разбила исходную пирамиду на две с общим основанием АВТ и вершинами С - в нижней и М- в верхней.
Проведем в плоскости сечения прямую ТН, а из вершин образовавшихся пирамид их высоты СК и МЕ перпендикулярно к этой прямой, лежащей в плоскости сечения, а значит и перпендикулярно плоскости их общего основания.
Треугольники МЕТ и СТК прямоугольные с равными острыми углами МТЕ=СТК - они вертикальные.
Следовательно, эти треугольники подобны, и отношение их высот равно отношению их сторон, т.е.
МЕ:СК=МТ:СТ=7:8
Объем пирамиды равен 1/3 произведения её высоты на площадь основания.
Основание у обеих пирамид общее, следовательно, их объемы относятся как 7:8
Содержание одной части этого отношения равно 30:(7+8)=2
Объем пирамид с равным основанием больше у той, чья высота больше.
V САВТ=2*8=16 (ед. объема)