Вершины треугольника находятся в точках О(0, 0), А(0, 6), B(8, 0).
Отсюда следует, что заданный треугольник - прямоугольный, а его катеты лежат на осях , гипотенуза АВ = √(6² + 8²) = 10.
Находим точку пересечения биссектрис прямоугольного
треугольника АОВ.
Уравнение биссектрисы прямого угла: у = х.
Точка пересечения биссектрисы угла А с ОВ делится пропорционально 6 и 10. То есть: (8/16)*6 = 3, 8/16)*10 = 5.
Получаем уравнение биссектрисы угла А: у = (-6/3)х + 6 = -2х + 6.
Решаем систему двух уравнений.
{y = x,
{y = -2x + 6.
Вычтем из первого второе: х - (-2х) - 6 = 0, 3х = 6, х = 6/3 = 2.
у = х = 2. Найдена точка пересечения биссектрис: К(2; 2).
Находим разность координат при параллельном переносе А в К:
Δх = 2 - 0 = 2, Δу = 2 - 6 = -4.
Переходим к центру описанной окружности.
В прямоугольном треугольнике он находится в середине гипотенузы.
Координаты этой точки равны половинам координат точек А и В.
Точка С(8/2=4; 6/2=3) = (4; 3).
При параллельном переносе разность координат сохраняется.
Точка С1(4+2=6; 3+(-4)=-1) = (6; -1).
ответ: С1(6; -1).
Треугольник, периметр которого равен 18 см, длится биссектрисой на два треугольника, периметр которых равны 12 см и 15 см. Найдите биссектрису этого треугольника.
(И напишите условие задачи
Объяснение:
Дано : ΔАВС, АД-биссектриса, Д∈ВС. Р( АВС)=18 см, Р(АДВ)=12 см,
Р (АДС)=15 см.
Найти : длину отрезка АД.
Решение.
Р(АДВ)=АВ+ВД+ДА=12
Р (АДС)=АС+СД+ДА=15 . Получили систему :
[АВ+ВД+ДА=12
{АС+СД+ДА=15 сложим почленно и учтем, что ВД+СД=ВС.
АВ+АС+ВС+2*ДА=27 ,
Р( АВС)+2*ДА=27 ,
18+2*ДА=25 ,
2*ДА=9 ,
ДА=4,5 см .
R=abc/4S
Площадь найдём по теореме Герона:
S=sqrt(p(p-a)(p-b)(p-c))
p=(a+b+c)/2=(16+63+65)/2=144/2=72
S=sqrt(72(56)(9)(7))=sqrt(254016)=504 см^2
R=16*63*65/(4*504)=65520/2016=32.5 см