<AFE=74°
<FAE=38°
<AEF=68°
Объяснение:
У квадрата углы по 90°
<С=<D=<A=<B=90°
Сумма углов в треугольнике равна 180°
Рассмотрим треугольник ∆ЕСF.
<FEC=50°, по условию.
<ЕСF=90° угол квадрата.
<EFC=180°-<FEC-<ECF=180°-90°-50°=40°
<DFC=180°, развернутый угол.
<AFE=<DFC-<DFA-<EFC=180°-66°-40°=74°
Рассмотрим треугольник ∆АFD
<D=90°, угол квадрата.
<DFA=66°, по условию
Сумма углов в треугольнике равна 180°
<DAF=180°-<D-<DFA=180°-90°-66°=24°
<DAB=90°, угол квадрата.
<FAE=<DAB-<BAE-<DAF=90°-24°-28°=38°
Сумма углов в треугольнике равна 180°
<АЕF=180°-<FAE-<EFA=180°-38°-74°=68°
Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
Тогда
AB²=10+10-2•(√10)•(√10)•0,8⇒
АВ²=4
АВ=СД=2 м
Из другой формулы площади прямоугольника
S=a•b найдем вторую сторону:
S=АД•AB
12=АД•2
ВС=АД=12:2=6 м
Р=2(AB+BC)=16 м