Касательная СЕ к первой окружности - хорда второй, т.к. соединяет две ее точки С и Е.
Соединим центр В второй окружности с С и проведем к СЕ перпендикуляр ВМ.
Перпендикуляр из центра окружности к хорде делит ее пополам. ⇒ СМ=ЕМ=18:2=9. Треугольник СМВ прямоугольный.
По т.Пифагора ВМ=√(СВ²-СМ²)= √(225-81)=12
В первой окружности проведем радиус в точку касания С. ∠ОСЕ =90°(свойство радиуса к точке касания).
Из О проведем к СВ отрезок ОК ⊥ СВ. ∆ СОК - прямоугольный. Сумма острых углов прямоугольного треугольника равны 90°.
∠МВС+∠МСВ=90°. ∠ОСВ+∠МСВ=90°, ⇒ ∠СОК=∠ВСМ. sin∠МСВ=МВ:СВ=12/15=0,8. Синус равного ему ∠СОК=0,8.
Радиус СО=СК/sin∠COK= 9,375 (ед. длины)
Решаем как частный случай
Искомая точка , обозначаем через M , должна находится на плоскости перпендикулярной отрезка AC и проходящую через ее середину ( требование условия MA = MC) , но в данном случае это совпадает с плоскостью xoz ||см. A(0;1;0) и C(0;-1;0)||,
т.е. ординат этой точки равно нулю Y(M) =0.Но c другой стороны M ∈(xoy) ⇒ X(M) =0 . * * * M (x ; 0 ;0) * * *
MA =MB ⇔ √((x-0)² +(0 -1)²+ (0 -0)²) = √( (x+1)² +(0 -0)²+ (0 -1)²) ⇔
√(x² +1) = √( x²+2x +2) ⇒ x² +1 =x²+2x +2 ⇒ x= -0,5.
ответ: M(-0,5 ; 0; 0 ).
P.S.
Общий случай три уравнения с тремя переменными M(x ; y ; z)
Между прочем в этом примере точка B(-1;0;1) тоже ∈ (xoz)
⇒ BA =BC.