Ну очень сложно : смотрите, если радиус ВПИСАННОЙ в равносторонний треугольник окружности r, то высота 3*r, а это - сторона правильного шестиугольника. Правильный шестиугольник как-бы составлен из 6 равносторонних треугольников со стороной 3*r (ну, типа лепестков ромашки, 6 треугольников с общей вершиной), и их высоты как раз и будут искомым радиусом, то есть 3*r*корень(3)/2 (ну, найти высоту равностороннего треугольника по заданной стороне - это не трудно :)).
Считаем тр-к равнобедренным, т.О пересечение биссектрис; если угол при вершине по условию 120 гр., то равные углы при основании А и С=(180-120)/2=30гр.; биссектриса АЕ делит угол А на 2 по 15 гр.; рассм. тр-к АОД, он прямоугольный, т.к. биссектриса ВД является медианой и высотой равнобедренного тр-ка. Угол АОД=90-15=75 гр. по свойству острых углов прямоугольного тр-ка. Углы АОД и ВОЕ вертикальные, значит угол ВОЕ=75гр. Аналогично угол FOB=75гр. Значит угол между биссектрисами АЕ и CF угол FOE=75+75=150 гр.
Ну очень сложно : смотрите, если радиус ВПИСАННОЙ в равносторонний треугольник окружности r, то высота 3*r, а это - сторона правильного шестиугольника. Правильный шестиугольник как-бы составлен из 6 равносторонних треугольников со стороной 3*r (ну, типа лепестков ромашки, 6 треугольников с общей вершиной), и их высоты как раз и будут искомым радиусом, то есть 3*r*корень(3)/2 (ну, найти высоту равностороннего треугольника по заданной стороне - это не трудно :)).
Итак, ответ 3*(4*корень(3))*корень(3)/2 = 18.