Воспользуемся теоремой о диагонали прямоугольного параллелепипеда: квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
На чертеже: а - длина, в - ширина, с - высота, d - диагональ.
d2 = а2 + в2 + с2.
422 + 122 + с2 = 522.
2 304 + 144 + с2 = 2 704.
2 448 + с2 = 2 704.
с2 = 2 704 - 2 448.
с2 = 256.
с = √256.
с1 = 16; с2 = -16 (второй корень не подходит, т.к. с - это высота параллелепипеда, значение которой не может быть выражено отрицательным числом).
Находим площадь поверхности параллелепипеда. У него 6 граней, каждая грань - это прямоугольник. Нужно найти площади каждой грани и сложить их. Формулой это можно записать так:
S поверх. = 2ас + 2ав + 2вс = 2 х (ас + ав + вс).
S поверх. = 2 х (48 х 16 + 48 х 12 + 12 х 16) = 2 х (768 + 576 + 192) = 2 х 1 536 = 3 072.
Находим объем параллелепипеда по формуле: V = а х в х с.
V = 48 х 12 х 16 = 9 216.
ответ: площадь поверхности параллелепипеда равна 3 072, его объем равен 9 216.
1)г. 2)б. 3)а. 4)в. 5)я прикрепила картинку к этому заданию.Не забудь написать «Дано: треугольникABC; a=7;b=8;c=5. Найти : <А-?» ответ , кстати , в конце <А=60 градусов.(просто не поместилось.) 6)AB=10x
S=pr
p=13x+13x+10x2=18x
S=p(p−13x)(p−13x)(p−10x)‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√ — по формуле Герона.
7) если СК биссектриса, то по ее свойству если СЕ/СВ=3:1 то и КЕ:ВК=3:1 Обозначим ВК=у, КЕ=3у значит, ВЕ=4у т.к. угол ВОЕ центральный для угла С, то он=120 и тогда ∠ВОК=60 ВМ=ВО*sin 60 BM=8√3*√3/2=12 ВЕ=4у=24 ⇒ у=6 3у=3*6=18
8) 1. Теорема синусов для треугольника КОР KP/sin KOP=OP/sin OKP sin OKP=3*sqrt2*sqrt2/2/5=3/5 cos^2(OKP)=1-sin^2(OKP)=(4/5)^2 Т.к. КОР тупой, то ОКР острый, cos OKP=4/5 2. sin OPK=sin(180-KOP- OKP)=sin(KOP+OKP)=sin KOP*cos OKP+cos KOP*sin OKP sin OPK=sqrt2/2*(4/5-3/5)=sqrt2/10 3. S(KMP)=2*S(KOP)=OP*KP*sin OPK=3*sqrt2*5* sqrt2/10=3
9) Если диагонали трапеции перпендикулярны, то площадь можно найти по следующим формулам: S-Һв квадрате, где һ-высота или S-(a+b)в квадрате/4, где а иb -основания Воспользуемся последней формулой!Т к дана длина ср линии трапеции, то можно найти сумму длин оснований трапеци: ср линия3 1/2(а+b); 5%31/2(а+b); (а+b)-10см Найдем S- (а+b)в квадрате/4 %3D10в квадрате/ 4-25см2
1)г. 2)б. 3)а. 4)в. 5)я прикрепила картинку к этому заданию.Не забудь написать «Дано: треугольникABC; a=7;b=8;c=5. Найти : <А-?» ответ , кстати , в конце <А=60 градусов.(просто не поместилось.) 6)AB=10x
S=pr
p=13x+13x+10x2=18x
S=p(p−13x)(p−13x)(p−10x)‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√ — по формуле Герона.
7) если СК биссектриса, то по ее свойству если СЕ/СВ=3:1 то и КЕ:ВК=3:1 Обозначим ВК=у, КЕ=3у значит, ВЕ=4у т.к. угол ВОЕ центральный для угла С, то он=120 и тогда ∠ВОК=60 ВМ=ВО*sin 60 BM=8√3*√3/2=12 ВЕ=4у=24 ⇒ у=6 3у=3*6=18
8) 1. Теорема синусов для треугольника КОР KP/sin KOP=OP/sin OKP sin OKP=3*sqrt2*sqrt2/2/5=3/5 cos^2(OKP)=1-sin^2(OKP)=(4/5)^2 Т.к. КОР тупой, то ОКР острый, cos OKP=4/5 2. sin OPK=sin(180-KOP- OKP)=sin(KOP+OKP)=sin KOP*cos OKP+cos KOP*sin OKP sin OPK=sqrt2/2*(4/5-3/5)=sqrt2/10 3. S(KMP)=2*S(KOP)=OP*KP*sin OPK=3*sqrt2*5* sqrt2/10=3
9) Если диагонали трапеции перпендикулярны, то площадь можно найти по следующим формулам: S-Һв квадрате, где һ-высота или S-(a+b)в квадрате/4, где а иb -основания Воспользуемся последней формулой!Т к дана длина ср линии трапеции, то можно найти сумму длин оснований трапеци: ср линия3 1/2(а+b); 5%31/2(а+b); (а+b)-10см Найдем S- (а+b)в квадрате/4 %3D10в квадрате/ 4-25см2
Воспользуемся теоремой о диагонали прямоугольного параллелепипеда: квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
На чертеже: а - длина, в - ширина, с - высота, d - диагональ.
d2 = а2 + в2 + с2.
422 + 122 + с2 = 522.
2 304 + 144 + с2 = 2 704.
2 448 + с2 = 2 704.
с2 = 2 704 - 2 448.
с2 = 256.
с = √256.
с1 = 16; с2 = -16 (второй корень не подходит, т.к. с - это высота параллелепипеда, значение которой не может быть выражено отрицательным числом).
Находим площадь поверхности параллелепипеда. У него 6 граней, каждая грань - это прямоугольник. Нужно найти площади каждой грани и сложить их. Формулой это можно записать так:
S поверх. = 2ас + 2ав + 2вс = 2 х (ас + ав + вс).
S поверх. = 2 х (48 х 16 + 48 х 12 + 12 х 16) = 2 х (768 + 576 + 192) = 2 х 1 536 = 3 072.
Находим объем параллелепипеда по формуле: V = а х в х с.
V = 48 х 12 х 16 = 9 216.
ответ: площадь поверхности параллелепипеда равна 3 072, его объем равен 9 216.