Отрезать от равностлроннего треугольника равные между собой равносторонние треугольники так, чтобы остался шестиугольник, можно единственным образом: стороны данных треугольников равны сторонам шестиугольника, причём все стороны треугольников равны 1/3 стороне исходного треугольника. Все треугольники будут подобны большему, коэффициент подобия равен 1/3. Тогда их площади относятся как квадрат коэффициента подобия, т.е. 1/9. Теперь найдём сумму площадей отрезанных треугольников: Sотрез. = 3•1/9•36 = 36/3 = 12. Площадь шестиугольника равна разности площади исходного треугольника и сумме площадей отрезанных треугольников: Sшест. = 36 - 12 = 24. ответ: 24.
Если площадь полной поверхности шара 4*пи*квадрат его радиуса по условию равна 41, то можем найти радиус этого шара.
Этот радиус совпадает с радиусом основания цилиндра.
Два найденных радиуса, сложенные вместе - высота цилиндра.
Итак, мы знаем радиус основания цилиндра и его высоту.
Теперь не составит труда найти площадь его полной поверхности.
Для этого к площади боковой поверхности 2*пи*радиус основания*высота
нужно прибавить сумму площадей его оснований:
пи*квадрат радиуса основания.
Обратите внимание на ошибку в условии: площадь полной поверхности шара задана без величины пи. Исправьтесь,