Точка дотику вписаного кола ділить катет прямокутного трикутника на відрізки 6см і 3•6см, якщо рахувати від вершини. Знайдіть периметр трикутника, якщо гіпотенуза дорівнює 5•6см. До ть будь ласка (7 клас)
Шаг 1. Для удобства описания решения позволю себе обозначить O как O2, F как F1 и E как F2. Шаг 2. Обозначим точку пересечения AB и O1 O2 как D. Шаг 3. Решение будет симметрично относительно прямой AB, поэтому индексы я опускаю. Рассматриваем треугольник OBD: угол D прямой. значит, OD^2 = OB^2 - BD^2. Шаг 4. Рассматриваем треугольник OMD: угол D прямой, значит, OM^2 = OD^2 + MD^2 = OB^2 - BD^2 + MD^2. Шаг 5. Рассматриваем треугольник OMF: угол F прямой, значит, MF^2 = OM^2 - OF^2 = OB^2 - BD^2 + MD^2 - OF^2. Вспоминаем, что OB = OF = R - радиус окружности, поэтому, MF^2 = MD^2 - BD^2. Равенство справедливо как для первой окружности, так и для второй. Осталось подставить соответствующие индексы..
Если a и b не лежат в одной плоскости, значит прямые скрещивающиеся, через них плоскость нельзя провести.
Докажем от противного. Пусть обе плоскости, проведенные через а, будут || b. Две плоскости параллельны прямой b, следовательно прямая пересечения а этих двух плоскостей будет параллельна прямой b. Вышло, что b и а параллельные прямые, а по теореме, через две параллельные прямые можно провести плоскость. Получили противоречие условию, так как а и b не должны лежать в одной плоскости. Следовательно, одна из плоскостей, проведенная через а, не будет параллельна прямой b.
зарька ти? да ні ? зазазаза