а) Из условия следует, что угол ВМК должен быть равен углу А. В треугольниках МВК и АВС угол В общий. Треугольники подобны по двум углам (первый признак подобия) . Следовательно, КМ: АС=ВК: ВС
б) Площадь треугольника АВС равна сумме площадей четырёхугольника AKMC (S1) и площади треугольника МВК (S2). Значит, площадь треугольника АВС относится к площади треугольника МВК как 9:1. Отношение площадей подобных фигур равно квадрату коэффициента подобия. 9=3^2. Коэффициент подобия равен 3. Тогда АВ: ВМ=3
Объяснение:
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.