Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
в прямоугольнике противоположные стороны равны и все углы = 90 градусов. если ВЕ - биссектриса то уголы при биссектрисе = по 45 градусов.если рассмотреть треугольнык созданный при биссектрисы то получается что углы равны 90, 45, и 45 (90-45), значит этот треугольник равнобедреный , поэтому стороны треугольника будут равны по 17 см .
если АЕ=ЕД, то =38
38+39=76
17+17=34
34+76=110
ответ периметр 110 см
Задача 2
если треугольник АВД - прямоугольный а один из углов = 60 градусов то другой = 30 градусов.по теореме сторона лежащая напротив угла = 30 градусов равна полоаине гипотинузы если катет АВ = 12 см то ВД= 24 см
в прямоугольнике диагонали = АС = 24 см.
Задача 3
В прямоугольнике диагонали равны и если диагонали разделить на пополам они все будут равны из этого следует что треугольник ВАО - равнобедренный в равнобедренном треугольнике углы при основании равны поэтому угол ОВА или ОАВ =(180-40)/2=70 градусов