Перпендикуляр, проведенный из вершины угла прямоугольника к диагонали, делит ее на отрезки, длины которых относятся как 9: 16. Найдите периметр прямоугольника, если длина перпендикуляра 12 см.
В треугольнике СDE угол СDE = 90 градусов, т.к. DE перп. DC по условию, тогда ЕС - гипотенуза. Проведём из точки D к гипотенузе медиану DM, медиана из вершины прямого угла равна половине гипотенузы, тогда DM = EC/2=1. Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
Пойдем от противного. То есть, пусть прямая а не перпендикулярна хотя бы одной прямой b, лежащей в плоскости. Прямая b, лежащая в плоскости - параллельна плоскости, то есть она находится к плоскости под углом 0 градусов. Поскольку прямая а не перпендикулярна прямой b, лежащей в плоскости, то прямая а находится под углом к прямой b таким, который не равен 90 градусов. Обозначим этот угол как с. Поскольку прямая b лежит под углом 0 к плоскости, то прямая а лежит под углом с к плоскости, причем с не равен 90 градусов. А по условию, прямая b лежит под углом 90 градусов. Получили противоречие, которое доказывает свойство.
ладно ли говорить гм гм шщ щ