У прямоугольной трапеции 2 прямых угла, 1 тупой и 1 острый. Высота из тупого угла разбивает трапецию на прямоугольник и прямоугольный треугольник. Одна из сторон прямоугольника равна длине меньшего основания и равна 5. Один из катетов прямоугольного треугольника равен 22-5=17, а так как острый угол этого треугольника - 45 градусов, второй катет также равен 17. Второй катет является высотой и второй стороной прямоугольника. Таким образом, площадь прямоугольника равна 5*17=85, а площадь треугольника 17*17/2=289/2=144.5. Значит, суммарная площадь равна 144.5+85=229.5
Решай по этому примеру посмотри и поймёшь Сделаем к задаче рисунок. Обозначим точку пересечения биссектрис Δ АВС ( в котором ∠ С равен 61°) буквой М. Рассмотрим треугольник АВМ.∠ МАВ = ½ ∠ ВАС, ∠ АВМ = ½ ∠ АВС, тогда ∠ АМВ =180° -½ (∠ АВС + ∠ ВАС). Острый угол между биссектрисами на рисунке обозначен ɣ. Угол ɣ смежный с углом АМВ, следовательно, ɣ = ½ (∠ АВС + ∠ ВАС). Поскольку ∠С треугольника АВС =61°, то ∠ АВС + ∠ ВАС = 119°. Тогда ɣ =½ (∠ АВС + ∠ ВАС) = 119° : 2 = 59,5° ответ: 59,5° если не нравится то можешь не решать я привёл пример.