Шел длинным путем. Доказал. И задумался. А зачем условие равнобедренности?)
.
а) ∠DВМ=∠МВС; по условию, ∠МВС=∠ВМD, как внутр. накрест лежащие при DМ║ВС и секущей ВМ, Мзанчит, ДМ=ВD.
б) ∠МСD=∠ВСD по условию; ∠DСВ=∠СМ, как внутр. накрест лежащие при DМ║ВС и секущей DС, занчит, DМ=МС.
из а) и б)⇒DМ=ВD=МС
как бы обошелся без того, что треугольник равнобедренный.
Положим, что равные углы, а именно ∠МВС=∠DСВ=α
как половины равных углов при основании равнобедренного треугольника .
а т.к. в ΔВМС ∠В+∠С=α+2α=3α, то ∠ВМС=180°-3α; т.к. ДМ║ВС, то ∠DМС+∠ВСМ=180°⇒∠ВМD=180°-(180-3α)-2α=α⇒DМ=ВD; и опять таки т.к. DМ║ВС при секущей DС : ∠СDМ=∠DСВ. как внутр. накрест лежащие , т.е. тоже равен α⇒ DМ=МС
а из того, что ВD= DМ и МС=DМ⇒DМ=ВD=МС Доказано. но не покидает ощущение недосказанности. если можно доказать равенство не прибегая к равнобедренности треугольника, то зачем это лишнее условие?)
1. Расстояние от точки К до прямой МР будет являться перпендикуляр КО, опущенный из вершины К на сторону МР. Тогда в прямоугольном треугольнике РОК сторона КР=2КО (по условию). В прямоугольном треугольнике РОК катет КО равный половине гипотенузы КР лежит против угла КРМ равного 30 градусов.
2. Расстоянием от прямой b до стороны КР будет являться перпендикуляр МН, опущенный из вершины М к стороне КР. Тогда в прямоугольном треугольнике РМН против угла НРМ (это тот же угол КРМ) равного 30 градусов лежит катет МН равный половине гипотенузы МР. МН=16/2=8
ответ: угол С=80°
Объяснение: сумма углов треугольника составляет 180°, поэтому
угол С=180-40-60=80°