Биссектриса угла треугольника делит сторону, которую пересекает, в отношении прилежащих сторон. Расмотрим треугольник АВН. АН: АВ= КН: ВК=16:20=4:5 Гипотенуза и один из катетов относятся как 5:4. Естественно предположить, что отношение всех сторон будет отношением сторон египетского треугольника, т. е. 5:4:3 Пусть коэффициент отношения будет хТогда высота ВН=3х=36 смх=12 смАВ=5х=60 смАН=4х=48 смОтсюда АС=48*2=96 Р=60*2+96=216 см²Вариант решения через т. Пифагора: ВН²=АВ²-АН² 1296=25х²-16х²=9х² х=12 смАВ=60 смАС=48*2=96 смР=216 см²
Двугранные и многогранные углы входят в новые стандарты по математике как базового, так и профильного уровня обучения в старших классов. Однако задачам на вычисление этих углов обычно не уделяется должного внимание. В то же время решение таких задач выработке необходимых вычислительных навыков, повторяет различные планиметрические формулы и соотношения, развивает пространственные представления учащихся.
Здесь мы рассмотрим вопрос об измерении двугранных и многогранных углов. Предлагаемый материал и задачи могут быть использованы на профильном уровне при изучении темы «Правильные многогранники», при проведении элективных курсов, подготовке учащихся к решению олимпиадных задач и задач вступительных экзаменов по математике в вузы.
Начнем с двугранных углов. Двугранный угол является пространственным аналогом угла на плоскости. Напомним, что углом на плоскости называется фигура, образованная двумя лучами этой плоскости с общей вершиной и частью плоскости, ограниченной этими лучами. Будем считать аналогом точки на плоскости прямую в пространстве и аналогом луча на плоскости полуплоскость в пространстве. Тогда, по этой аналогии, двугранным углом в пространстве называют фигуру (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства, ограниченной этими полуплоскостями. Полуплоскости называются гранями двугранного угла, а их общая граничная прямая – ребром двугранного угла.
Объяснение:
Тр-к A1'A2'A1-прямоуг-й , <A1'=90гр. по теор о 3-х _I_ -х,, в основании-квадрат со стороной х, A1A1'=y, sina=x/a, x=a*sina, a^2=x^2+x^2+y^2 (по св-ву диагонали парал-да), y^2=a^2-2x^2=a^2-2a^2sin^2a=a^2(1-2sin^2a)=a^2*cos2a, y=aVcos2a (V-корень), S(бок)=Р(осн)*у=4asina*aVcos2a=4a^2sinaVcos2a, S(полн)=S(бок)+2S(осн), 2S(осн)=2*a^2sin^2a