Объяснение:
1) Т. к. AB = BC, то треуг. ABC - р/б.
Т. к. треуг. ABC - р/б, то угол BCA = углу BAC = 50°
угол ABC = 180° - ∠BAC - ∠BCA = 180° - 50° - 50° = 80°
Т. к. ΔABC - р/б, то BM - биссектриса.
Т. к. BM - биссектриса, то ∠CBM = ∠ABC / 2 = 80° / 2 = 40°
ответ: 40°
3) ∠BCA = 180° - ∠BCD = 180° - 125° = 55°
Т. к. AB = BC, то ΔABC - р/б
Т. к. ΔABC - р/б, то ∠BAC = ∠BCA = 55°
∠ABC = 180° - ∠BAC - ∠BCA = 180° - 55° - 55° = 70°
ответ: 55°; 70°; 55°
4) ∠ABC = 180° - ∠DBC = 180° - 120° = 60°
∠ACB = 180° - ∠ECB = 180° - 110° = 70°
∠BAC = 180° - ∠ABC - ∠ACB = 180° - 60° - 70° = 50°
ответ: 50°; 60°; 70°
5) ∠BAC = ∠1 = 40°, как смежные
∠BCA = 180° - ∠2 = 180° - 85° = 95°
∠ABC = 180° - ∠BAC - ∠BCA = 180° - 40° - 95° = 45°
ответ: 40°; 45°; 95°
Задача довольно простая. Тем более, чертёж уже имеется.
Итак, *решение*:
(очевидно, что перед нами равнобокая трапеция)
Опустим два перпендикуляра к неизвестной стороне из двух углов, равных 120°. Так как это перпендикуляры, то уголы, образованные ими и неизвестной стороной будут равны 90°, а углы, образованные ими и боковыми сторонами 120° - 90° = 30°.
Получим два прямоугольных треугольника, в которых один из острых углов равен 30°.
Катет, лежащий против угла в 30° равен половине гипотенузы. Ну... гипотенуза здесь 1, тогда катет 1 : 2 = 0,5. Аналогично находим катет и другого прямоугольного треугольника.
Отрезок, образованный основаниями этих высот будет равен 1, т.к. образуется прямоугольник, а у него противоположные стороны равны.
А чтобы найти четвёртую сторону, сло́жим это всё:
1 + 0,5 + 0,5 = 2.
ответ: 2.
всё :)
Відповідь:
40 см(формулы на фото)
Пояснення: