v В прямоугольном треугольнике больший угол равен 90°. Гипотенуза лежит против угла 90°. Против большего угла лежит большая сторона,
• Гипотенуза прямоугольного треугольника больше каждого из катетов. a < c > b
• Сумма острых углов прямоугольного треугольника 180°-90°=90°
• Две высоты прямоугольного треугольника совпадают с его катетами.
• Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на подобные треугольники.
• Если катет, лежит против угла 30°, он равен половине гипотенузы.
• Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, равна половине гипотенузы и является радиусом описанной около этого треугольника окружности.
• Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
• В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (теорема Пифагора):
c²=a²+b²
• Высота, проведенная к гипотенузе, - есть среднее пропорциональное между отрезками, на которые она делит гипотенузу ( т.е. между проекциями катетов на гипотенузу)
• Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Объяснение:
Дано:
Окружность с центром в точке О;
Дуга ED=60°;
ED=7 см.
Найти: длину окружности.
Проведем ЕО.
Угол ЕОF – центральный и опирается на дугу EF, тогда угол EOF=дуга EF=60°.
Угол DOE=180°–угол EOF=180°–60°=120° (смежные углы)
DO=EO так как радиусы равны, следовательно ∆ЕОD – равнобедренный с основанием ED.
Углы при основании равнобедренного треугольника равны, тогда угол DEO=угол ODE=(180°–угол DOE)÷2=(180°–120°)÷2=60°÷2=30°.
По теореме синусов в ∆EOD:
DO – радиус окружности.
C=2πr, где С – длина окружности; r – радиус окружности.
ответ: 24,2 см.