Дано трикутник ABC. На сторонах AB і AC відповідно позначені точки D і E так, що DE= 4 см і ADBD=32. Через точки B і C проведено плошину α, що паралельна відрізку DE.
так как средняя линия равна полусумме оснований то надо найти второе (большее основание), для этого проведем высоту из тупого угла к большему основанию. она отсечет от трапеции прямоугольник, то есть одна из частей разделенного высотой большего основания равна 10. найдем второй кусок большего основания дл я этого рассмотрим прямоугольный треугольник который образовала большая боковая сторона и высота. т.к один из острых углов в прямоугольном треугольнике равен 60 градусам, то 2ой угол равен 90-60=30 градусов. так каак в прямоугольном треугольнике катет лежащий против угла в 30 градусов (а это и есть нужный нам второй кусок большего основания) равен половине гипотенузы, то он равен 8/2=4. тогда большее основание равно сумме двух кусков то есть 10+4=14. средняя линия равна полусумме оснований, то есть (10+14)/2=24/2=12.
ответ:12.
p.s понимаю что на словах ничего не понятно поэтому вложен рисунок.
В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
так как средняя линия равна полусумме оснований то надо найти второе (большее основание), для этого проведем высоту из тупого угла к большему основанию. она отсечет от трапеции прямоугольник, то есть одна из частей разделенного высотой большего основания равна 10. найдем второй кусок большего основания дл я этого рассмотрим прямоугольный треугольник который образовала большая боковая сторона и высота. т.к один из острых углов в прямоугольном треугольнике равен 60 градусам, то 2ой угол равен 90-60=30 градусов. так каак в прямоугольном треугольнике катет лежащий против угла в 30 градусов (а это и есть нужный нам второй кусок большего основания) равен половине гипотенузы, то он равен 8/2=4. тогда большее основание равно сумме двух кусков то есть 10+4=14. средняя линия равна полусумме оснований, то есть (10+14)/2=24/2=12.
ответ:12.
p.s понимаю что на словах ничего не понятно поэтому вложен рисунок.