Пусть СР=х, тогда АР=4-х. Пусть СК=у, тогда ВК=6-у. Из прямоугольных треугольников квадрат катета ВР можно найти двумя сразу их объединим: ВС²-СР²=АВ²-АР², 6²-х²=5²-(4-х)², 36-х²=25-16+8х-х², х=27/8. Аналогично из прямоугольных тр-ков АСК и АВК: АС²-СК²=АВ²-ВК², 4²-у²=5²-(6-у)², 16-у²=25-36+12у-у², у=27/12. В тр-ке АВС cosC=(АС²+ВС²-АВ²)/(2АС·ВС)=(16+36-25)/(2·4·6)=27/48. В тр-ке CPK по теореме косинусов РК²=СР²+СК²-2СР·СК·cosC. РК²=(27/8)²+(27/12)²-2·27·27·27/(8·12·48)=(729/64)+(729/144)-(27³/48²)=(729/64)+(324/64)-(19683/2304)=(1053/64)-(19683/2304)=2025/256. РК=45/16=2.8125 - это ответ.
найти: Sполн.пов
решение.
Sполн.пов=Sбок+Sосн
Sбок=Росн*ha, ha-апофема
Sосн=а²
АВСД - квадрат. найдем диагональ АС по теореме Пифагора:
АС²=АВ²+ВС². АС=2√2
рассмотрим ΔМАО:
(О- точка пересечения диагоналей квадрата-основания пирамиды)
<MAO=45°,
AO=2√2/2, AO=√2. ΔMAO - прямоугольный равнобедренный, ⇒МО=√2
МК-апофема.
рассмотрим ΔМОК: <MOK=90°(MO-высота пирамиды)
ОК=2:2, ОК=1
найдем МК по тереме Пифагора:
МК²=МО²+ОК², МК=√3
Sполн.пов=(4*2*√3)+2²=8√3+4
Sполн.пов=8√3+4