Точка М не належить площині прямокутника ABCD.Якім є взаємне розташування прямих MD і ВС. 1. Паралельні 2. Перетинаються,але не перпендикулярні 3. Мимобіжені 4. Перетинаютсья і перпендикулярні
Треугольники АОА1 и ВОВ1 подобны по признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны".
В нашем случае АО/ОВ =А1О/ОВ1 = 2,7/5,4 = 1/2 (стороны пропорциональны),
∠АОА1 = ∠ВОВ1 как вертикальные.
Следовательно, треугольники АОА1 и ВОВ1 подобны с коэффициентом подобия k =1/2.
Высоты А1Н и В1Н1 этих треугольников также относятся с коэффициентом k = 1:2.
В1Н1 = 1,6 м. (дано). Значит А1Н = 1,6·(1/2) = 0,8 м.
На данном луче ВС откладываем угол, равный данному углу АВС , совместив вершину угла В и начало луча. Для этого: 1. Циркулем, установленным в вершину данного угла проводим дугу произвольного радиуса и в местах пересечения этой дуги со сторонами угла получаем точки E и F. Замеряем циркулем расстояние между точками E и F. 2. Выполняем такие же действия на данном луче: Циркулем, установленным в вершину данного луча проводим дугу радиуса ВЕ, а из точки Е проводим дугу радиусом EF. На пересечения этих дуг получаем точку F. Соединив точки В и F, получаем угол EBF, равный данному. 3. Разделим полученный угол на две равные части. Для этого циркулем из точек Е и F проводим окружности радиусом EF. В местах пересечения этих окружностей получим точки P и Q, соединив которые, получим угол РВЕ, равный половине данного угла. 4. Разделив этот угол пополам, методом, описанным выше, получим искомый угол DBE, отложенный от луча ВС и равный 1/4 данного угла.
0,8 м.
Объяснение:
Треугольники АОА1 и ВОВ1 подобны по признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны".
В нашем случае АО/ОВ =А1О/ОВ1 = 2,7/5,4 = 1/2 (стороны пропорциональны),
∠АОА1 = ∠ВОВ1 как вертикальные.
Следовательно, треугольники АОА1 и ВОВ1 подобны с коэффициентом подобия k =1/2.
Высоты А1Н и В1Н1 этих треугольников также относятся с коэффициентом k = 1:2.
В1Н1 = 1,6 м. (дано). Значит А1Н = 1,6·(1/2) = 0,8 м.