Отрезки ab и cd пересекаются в точке о. которая является серединой каждого из них. a)докажите,что треугольник аос = треугольнику bod б)найдите угол оас,если угол оdb= 20°, угол аос=115°
а) так как прямые пересекаются, то острый угол между ними - вертикальный, значит ∠АОС = ∠BOD. А если точка О является серединой каждой из прямых, то ΔAOC = ΔBOD (за двумя сторонами и углу между ними)
б) ∠ODB= 20⁰ , ∠AOC= 115⁰, ∠OAC - ?
∠ODB = ∠OCA (как соответствующий угол при параллельных прямых и секущей). Тогда ∠OAC= 180⁰- ( ∠AOC + ∠ODB) = 180⁰ - (115⁰ + 20⁰) = 45⁰
1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
Допустим у нас есть два равных треугольника АВС и А1В1С1, АМ и А1М1 - их соответственные медианы, проведенные к сторонам ВС и В1С1 соответственно тогда ВМ = МС, В1М1 = М1С1 (АМ и А1М1 - медианы), а раз ВС = В1С1, то все педидущие четыре отрезка равны: ВМ = МС = В1М1 = М1С1 далее уголВ = углуВ1(соответствующие углы равных треугольников) АВ = А1В1 (соответствующие стороны равных треугольников)
на основании выше изложенного делаем вывод, что тр.АВМ = тр.А1В1М1(по двум сторонам и углу между ними) а уже на основании равенства треугольников АВМ и А1В1М1 делаем вывод о равенстве наших медиан АМ и А1М1, что и требовалось доказать
а) так как прямые пересекаются, то острый угол между ними - вертикальный, значит ∠АОС = ∠BOD. А если точка О является серединой каждой из прямых, то ΔAOC = ΔBOD (за двумя сторонами и углу между ними)
б) ∠ODB= 20⁰ , ∠AOC= 115⁰, ∠OAC - ?
∠ODB = ∠OCA (как соответствующий угол при параллельных прямых и секущей). Тогда ∠OAC= 180⁰- ( ∠AOC + ∠ODB) = 180⁰ - (115⁰ + 20⁰) = 45⁰