Дано :
Четырёхугольник ABCD — трапеция (BC||AD).
Точки М и N — середины АВ и CD соответственно.
MK = 3.
Найти :
ВС = ?
Так как MN соединяет середины боковых сторон трапеции, то MN — средняя линия ABCD (по определению).
Средняя линия трапеции параллельна её основаниям.Следовательно, MN||BC||AD.
Рассмотрим ∆АВС.
МК||ВС (так как МК лежит на MN) и АМ = ВМ (по условию). Тогда по признаку средней линии треугольника МК — средняя линия ∆АВС.
Средняя линия треугольника равна половине стороны, которой она параллельна.Следовательно, ВС = 2МК = 2*3 = 6.
6 (ед).
Прямые АВ и СD не лежат в одной плоскости. По какой прямой пересекаются плоскости ABD и ВСD?
ответ: По прямой ВD.
Объяснение. Плоскости ABC и ВСD имеют две общие точки: В и D.
Из аксиом планиметрии:
1.Через любые две точки можно провести прямую, притом только одну.
Из аксиом стереометрии:
2. Если две точки прямой лежат в плоскости, то все точки данной прямой лежат в этой плоскости.
3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
Следовательно, все точки прямой ВD лежат и в плоскости ABD, и ВСD, т.е. эти плоскости пересекаются по прямой ВС,