1. Аксиома – это очевидные положения геометрии, не требующие доказательств.
2. Через точку, не лежащую на данной прямой, проходит
а) только одна прямая, параллельная данной.
3. Не может быть следствием аксиомы или теоремы:
а) утверждение, не требующее доказательств.
4. Следствия аксиомы параллельных прямых:
б) если две прямые параллельны третьей прямой, то они параллельны друг другу.
в) если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
г) если три прямые параллельны, то любые две из них параллельны друг другу.
5. Если через точку, лежащую вне прямой, проведено несколько прямых, то сколько из них пересекаются с исходной прямой?
б) все, кроме параллельной прямой.
6. Если одна из прямых, проходящих через точку, лежащую вне заданной прямой, параллельна этой прямой, то другие прямые, проходящие через точку, не могут быть ей параллельны, потому что
а) это противоречит аксиоме параллельных прямых.
Диагонали ромба разбивают его на 4 равных прямоугольных треугольника с катетами
0,5дм и 3,5 дм
Тогда гипотенуза ( сторона ромба) по теореме Пифагора:
а²=0,5²+3,5²=0,25+12,25=12,5
а=√(1250/100)=(25/10)·√2=2,5√2
Над диагональю ромба длиной 1 дм расположена диагональ параллелепипеда длиной пропорциональной числу 13, обозначим 13х
Тогда высота параллелепипеда по теореме Пифагора
H²=(13x)²-1
Над диагональю ромба длиной 7 дм расположена диагональ параллелепипеда длиной пропорциональной числу 37, обозначим 37х
Тогда высота параллелепипеда по теореме Пифагора
H²=(37x)²-7²
Приравниваем правые части
(13х)²-1=(37х)²-7²
(37х)²-(13х)²=7²-1
(37х-13х)(37х+13х)=48
24х·50х=48
50х²=2
х²=1/25
х=1/5
Значит
диагонали параллелепипеда имеют длину (13/5)дм и (37/5) дм, а высота параллелепипеда
Н²=(169/25)-1=144/25
Н=12/5
S(полн)=2S(осн)+S(бок)=2·(1/2)·1·7+4·2,5√2·12/5=7+24√2
ответ. 7+24√2 кв. дм