По т. о пересекающихся хордах ( а диаметр - наибольшая хорда окружности) при пересечении двух хорд окружности произведение отрезков одной хорды равно произведению отрезков другой хорды: АС•СВ=КС•СМ
15•5=(R+5)•(R-5) ⇒
R²-25=75
R²=100
R=10⇒
КМ=2R=20. Но АВ=АС+ВС=15+5=20. Следовательно, АВ - диаметр данной окружности, и рисунок должен выглядеть несколько иначе (см.рис.2. )
Отметим, что наименьший угол прямоугольной трапеции, это единственный острый угол. (на нашем рисунке это <D). SinD=EP/HD => EP=DH*SinD. SinD=GP/HC => GP=HC*SinD. PH=√(GP*PE), как высота из прямого угла (<GHE=90°, так как опирается на диаметр GE). Тогда PH=SinD√(HD*CH). Но √(HD*CH)=OH - высота из прямого угла в прямоугольном треугольнике СOD c <COD=90° (свойство трапеции: "В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°"). А так как ОН=АВ/2=R, то РН=(АВ/2)*SinD. Площадь четырехугольника EFGH равна сумме площадей треугольников EFG и EHG. Sefg=(1/2)*EG*OF = (1/2)*AB*(1/2)AB=AB²/4. Sehg=(1/2)*EG*PH = (1/2)*AB*(AB/2)*SinD=AB²*SinD/4. Тогда площадь четырехугольника EFGH равна (AB²/4)*(1+SinD). Площадь трапеции равна (1/2)*(BC+AD)*AB. Но поскольку в трапецию вписана окружность, то ВС+АD=АВ+СD (свойство: "В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон"). В треугольнике CDK: CK=CD*SinD, но СК=АВ, значит CD=AB/SinD. Тогда Sabcd=(1/2)*(AB+AB/SinD)*AB =AB²*(1+1/sinD)/2. По условию Sabcd=4*Sefgh. или (АВ²*(1+1/sinD)/2=4*(AB²/4)*(1+SinD). Отсюда 1/SinD==2 и SinD=1/2. ответ: острый угол D трапеции равен 30°.
ответ: 10
Объяснение:
Сделаем рисунок 1 согласно условию задачи.
Проведем через О и С диаметр КМ, КО=ОМ=R.
КC=R+5, CM=R-5.
По т. о пересекающихся хордах ( а диаметр - наибольшая хорда окружности) при пересечении двух хорд окружности произведение отрезков одной хорды равно произведению отрезков другой хорды: АС•СВ=КС•СМ
15•5=(R+5)•(R-5) ⇒
R²-25=75
R²=100
R=10⇒
КМ=2R=20. Но АВ=АС+ВС=15+5=20. Следовательно, АВ - диаметр данной окружности, и рисунок должен выглядеть несколько иначе (см.рис.2. )