Как известно, высота равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна её средней линии ( полусумме оснований).
Тогда h=(8+10):2=9 см
S=0,5•(8+10)•9=81 см²
Подробнее:
Диагонали равнобедренной трапеции равны. AC=BD
Так как они пересекаются под прямым углом, треугольники ВОС и АОД - равнобедренные прямоугольные, и тогда ВО=OC=ВС•sin45º=4√2 AO=OД=АД•sin45º=5√2, откуда
АС=ВД=4√2+5√2=9√2
Проведем высоту ВН.
НД=полусумме оснований (свойство равнобедренной трапеции)
. Т.к. угол ВДН=45°, треугольник ВНД- равнобедренный, ВН=НД=9√2*sin 45º=9
S АВСД=произведению полусуммы оснований на высоту.
S АВСД=0,5•(8+10)•9=81 см²
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4