Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними второго треугольника, то такие треугольники равны.
Дано: ΔАВС и ΔА₁В₁С₁. АВ = А₁В₁, АС = А₁С₁, ∠А = ∠А₁. Доказать: ΔАВС = ΔА₁В₁С₁. Доказательство:
Наложим треугольники друг на друга так, чтобы угол А совпал с углом А₁. Тогда совпадут и лучи АВ с А₁В₁ и АС с А₁С₁. Так как АВ = А₁В₁, точки В и В₁ совпадут. Так как АС = А₁С₁, точки С и С₁ тоже совпадут. Через две точки можно провести единственную прямую, поэтому совпадут и отрезки ВС и В₁С₁. Так как треугольники совпали при наложении - они равны.
При доказательстве признака использована аксиома: через любые две точки можно провести единственную прямую
Точки A,B,C,D не лежат в одной плоскости. Точки K, L, M, N - середины отрезков AB, BC, CD, AD cоответственно. Укажите прямые, параллельные прямой АС. 1)KL 2)нет 3)KL u MN 4)MN
Даны четыре точки, не лежащие в одной плоскости. Соединив точки А, В, С, получим треугольник АВС. Соединив точки А, С, D, получим треугольник АСD. Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине. В треугольнике АВС точки К и L соединяют середины сторон АВ и ВС, следовательно, KL- средняя линия этого треугольника и параллельна АС. В треугольнике АDС точки M и N соединяют середины сторон АD и CD, следовательно, MN- средняя линия этого треугольника и параллельна АС. KL и MN - параллельны прямой АС.
Биссектриса внутреннего угла треугольника делит противолежащую сторону на части ,пропорциональные сторонам⇒AB: AC=BM:MC=6:7
ΔKBC подобен ΔDMC по трем углам: ΔKBС и ΔDMC прямоугольные,<C-общий,
<B+<C=90гр и <M+<C=90гр⇒<B=<M, BC+BM+MC=6+7=13
BK:MD=BC:MC
24:MD==13:7⇒MD=24*7:13=14см
Объяснение:
По свойству биссектрисы:
ВМ:МК=АВ:АС=6:7
Треугольники ВКД и МДК подобны (МД || BK как два перпендикуляра к АС)
МД:ВК=МС:ВС=7:13
МД=7ВК/13=7·26/13=14 см.
О т в е т. МД=14 см