1) 52°
2) 136°
3) 70°
Объяснение:
1) Рассмотрим треугольник ABC.
Внешний угол в треугольнике равен сумме двух внутренних углов не смежных с ним.
∠ABC+∠BCA=100° => ∠BCA=100°-∠ABC
∠ABC=48°
∠BCA=100°-48°=52°
2) Рассмотрим прямоугольный треугольник ABC с прямым углом в вершине A. Тогда ∠ABC=46°
Внешний угол в треугольнике равен сумме двух внутренних углов не смежных с ним.
=> внешний угол = ∠ABC+ ∠BAC = 46°+90°=136°
3) Рассмотрим треугольник ABC, AB=BC. Тогда ∠BAC=∠BCA
Внешний угол в треугольнике равен сумме двух внутренних углов не смежных с ним.
∠BAC=∠BCA, ∠BAC+∠BCA=140 ° => 2*∠BAC=140° => ∠BAC=70°
Дано:
тр АВС (уг С=90)
АС = 16 см
ВС = 12 см
АВ = 20 см
Найти:
а) косинус меньшего угла
б) сумму квадратов косинусов острых углов
а) по свойству соотношения сторон и углов треугольника, против меньшей стороны лежит меньший угол, а значит меньшим будет угол, лежащий против стороны 12 см, по условию, следовательно, это угол А.
cos A = AC / AB; cos A = 4/5 = 0.8
б) Есть св-во - оно же основное геометрическое тождество, сумма квадратов косинусов острых углов прямоугольного треугольника равна единице, но вы похоже этого ещё не изучали, посему надо найти оставшийся косинус угла В и найти сумму квадратов косинусов вычислением, приступим:
cos B = CB / AB; cos B = 12/20 = 3/5 = 0.6
cos²A +cos²B = 0.8²+0.6²=0.64+0.36=1