М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hdhdhhxhxu
hdhdhhxhxu
21.10.2020 04:19 •  Геометрия

за 1 во Во Дана окружность с центром O и её диаметры AB и CD.
Определи периметр треугольника AOD, если CB = 10 см, AB = 71 см.

1. Назови свойство радиусов окружности:
все радиусы одной окружности имеют
.

2. Назови треугольник, равный треугольнику AOD =
.
(Введи с латинской раскладки!)

3. PAOD=
см​


за 1 во Дана окружность с центром O и её диаметры AB и CD.Определи периметр

👇
Открыть все ответы
Ответ:
arisha72
arisha72
21.10.2020
Основание правильной четырехугольной призмы- квадрат со стороной а,
а=24/4=6 см, боковое ребро ⊥ основанию и равно 10, 
площадь полной поверхности призмы равна  Sбок+2Sосн, Sбок = 10*4а=
10*24=240 см², Sосн= а²= 6²=36 см², Sполн=Sбок+2Sосн=240+2*36=
240+72=312 см²,
основание правильной треугольной призмы- равносторонний Δ со стороной а=24/3=8 см, и тремя равными углами α= 180°/3=60°,
Sосн= а²sin60°/2= (8²*√3/2)/2=64√3/4= 16√3 см²,
боковое ребро ⊥ основанию и равно 10 см, т е 
Sбок= 3а*h= 3*8*10=240 см², Sполн= Sбок+2Sосн= 240+ 32√3,
сравним площади полных поверхностей этих призм:
312=240+72 > 240+32√3,  (√3 < 2) , т е  у нас полная поверхность 
четырехугольной призмы больше треугольной
4,5(80 оценок)
Ответ:
DIMjoykin
DIMjoykin
21.10.2020

68. По данным на рисунке найдите площадь \triangle CKB.

- - -Дано :

ΔСКВ - прямоугольный (∠С = 90°).

СК - высота (СК⊥АВ).

АК = 4, КВ = 16.

Найти :S_{\triangle CKB} ~=~ ?Решение :В прямоугольном треугольнике высота, проведённая к гипотенузе - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.

Следовательно, CK = \sqrt{AK*KB} = \sqrt{4*16} = \sqrt{2*2*4*4} = 2*4 = 8.

Площадь прямоугольного треугольника равна половине произведения его катетов.

Следовательно, S_{\triangle CKB}=\frac{CK*KB}{2} =\frac{8*16}{2} =\frac{128}{2} =64 ед².

ответ :

64 ед².

- - -

70. ABCD - прямоугольник. Найдите S_{ABCD}.

- - -Дано :

Четырёхугольник ABCD - прямоугольник.

АС - диагональ.

HD⊥АС.

HD = 6, АН = 9.

Найти :

S_{ABCD}~=~ ?

Решение :Прямоугольник - это параллелограмм, все углы которого прямые.

Следовательно ∠D = 90°.

Рассмотрим ΔACD - прямоугольный.

В прямоугольном треугольнике высота, опущенная на гипотенузу - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.

Следовательно, HD^{2} = AH*HC \Rightarrow HC = \frac{HD^{2} }{AH} = \frac{6^{2} }{9} = \frac{36}{9} =4.

Площадь треугольника равна половине произведения высоты и стороны, на которую опущена эта высота.

Следовательно, S_{\triangle ACD}=\frac{AC*HD}{2} =\frac{(AH+HC)*HD}{2} =\frac{(9+4)*6}{2} = 13*3=39 ед².

Диагональ параллелограмма делит параллелограмм на два равновеликих (равных по площади) треугольника.

Тогда S_{ABCD} = 2*S_{\triangle ACD} = 2*39 ед² = 78 ед².

ответ :

78 ед².

4,7(88 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ