Площадь трапеции ABCE равна 18 кв. единиц
Пошаговое объяснение:
Отметим середину стороны АВ через F (см.). Тогда отрезок EF делит параллелограмм ABCD на два равные параллелограммы AFED и FECB. В параллелограмме AFED отрезок AE будет диагональю. В параллелограмме FECB также проведём диагональ EB. По свойству параллелограмма диагонали делят площадь параллелограмма на 2 равные треугольники. В итоге получаем 4 равные треугольники. Если площадь треугольника ADE равна 6 кв. единиц, то площадь трапеции ABCE равна 3·6=18 кв.единиц.
Sбок.= 24+24+40+40 = 128 см².
Объяснение:
Sбок.=SASB + SBSC + SDSC + SASD.
1. Грань ASB — прямоугольный треугольник, SASB = AB⋅SB/2= 8⋅6/2 = 24 см².
2. Грани BSC и ASB — равные треугольники, SBSC = 24 см².
3. Грань DSC — прямоугольный треугольник, это доказывается теоремой о трёх перпендикулярах.
Площадь ΔDSC равна S= DC⋅SC/2,
SC вычисляем по теореме Пифагора: SC= √8²+6² = 10 см;
SDSC = 8⋅10/2 = 40 см².
4. Грань ASD — прямоугольный треугольник, по теореме о трёх перпендикулярах.
SASD = SDSC = 40 см².
ответ: Sбок.= 24+24+40+40 = 128 см².
Пусть V - объём цилиндра, R - длина радиуса основания цилиндра = 6, Н - высота цилиндра.
Найдём Н.
По условию Н < R в3 раза.
Следовательно -
Н = R/3 = 6/3 = 2.
V = R²*H*π
По условию π ≈ 3.
Подставим в формулу известные нам значения -
V ≈ 6²*2*3
V ≈ 36*2*3
V ≈ 216 (ед³).
ответ: ≈ 216 (ед³).