Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Задача может решать двумя 1) Для начала надо решить эту задачу, а затем поделить ответы на 2 и всё сложить. 3х - 1 сторона. 4х - 2 сторона. 5х - 3 сторона. 48 см - Р данного треугольника. Составим и решим уравнение: 3х+4х+5х = 48; 12х = 48; х = 4. 3×4=12 (см) - 1 сторона. 4×4=16 (см) - 2 сторона. 5×4=20 (см) - 3 сторона. 1.12÷2 = 6 - середина 1 отрезка. 2.16÷2 = 8 - середина 2 отрезка. 3.20÷2 =10. - середина 3 отрезка. 4.6+8+10 = 24 - Р треуг., вершины которого равны середине сторон. ответ: 24. 2) Вообще, можно просто поделить Р первого данного нам треугольника на 2, то бишь: 48÷2 = 24. ответ: 24. Но Вам мой совет, если Вы всё-таки спросили это для домашней работы, думаю, лучше всё-таки использовать первый вариант.
Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6.
Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ)
Найдем основание трапеции: АМ+МD
6+6=12
Найдем площадь:
S=
ответ:54