Объяснение:
№1 ∠CBA=60°, (тк сумма углов в прямоугольном Δ 90, и 90-30=60)
∠СВЕ 60:2=30°(ВЕ-биссектрисса)
СЕ=1/2 *6=3(тк по теореме против угла в 30° лежит половина гипотенузы)
ВС=√6²-√3²=√36-√9=√27 (по теореме пифагора)
ВА=2*√27=2√27(тк против угла 30° лежит половина гипотенузы)
АС=√(2√27)²-√(√27)²=√4*27-√27=√108-√27=√81=9(по теореме пифагора)
∠ВАС=30°
№2
ΔАВС-равнобедренный(тк ∠САВ=∠СВА=45° (тк по теореме в прямоугольнов Δ сумма острых углов =90°, а 90-45=45))
СД-высота , биссектриса и медиана, тк в равнобедренном Δ высота=медиана=биссектриса⇒по правилу медианы СД=ДА=4см
АВ=2*АД (тк СД как медиана делит АВ на 2 равные части) АВ=8см
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение: