В прямоугольном треугольнике катет противолежащий углу в 30° равен половине гипотенузы.
В прямоугольном треугольнике катет противолежащий углу в 60° равен меньшему катету умноженному на √3.
Сумма углов треугольника равна 180°.
Из условия задачи:
∠C = 90°
∠A = 60°
Тогда ∠B = 180°-90°-60° = 30°.
Гипотенуза (BA) равна 10 см.
Сторона AC противолежащая углу B равному 30° равна половине гипотенузы (BA), то есть 10:2=5 см.
Сторона BC противолежащая углу A равному 60° равна
стороне AC (5 см) умноженной на √3, то есть 5√3.
ответ: сторона BC равна 5√3.
Пирамида правильная, значит в основании квадрат. Обозначим пирамиду SАВСД. S -вершина. Проведём диагонали АС и ВД. В квадрате диагональ равна (а корней из2). Где а -сторона квадрата. По условию а=1,тогда АС=ВД= корень из 2. Расстояние между SВ и АС это перпендикуляр ОК из точки пересечения диагоналей О к ВS. Рассмотрим треугольник SВО( можно нарисовать отдельно). Это прямоугольный треугольник, у которого гипотенуза SВ=1(ребро пирамиды), катет ВО=ВД/2=(корень из 2 )/2. Второй катет SО это высота пирамиды. SО= корень из (ВSквадрат-ВОквадрат)=корень из (1-2/4)=(корень из 2)/2. Площадь треугольника Ssво=1/2*ВО*SО, она также равна Ssво=1/2*ВS*ОК. Приравнивая оба этих выражения, получим 1/2*(корень из 2)/2*(корень из 2)/2=1/2*1*ОК. Отсюда искомое расстояние ОК=1/2.
Высота цилиндра относится к его радиусу как 3 : 2, а диагональ осевого сечения цилиндра равна 10 см. Найдите радиус цилиндра.
Объяснение:
h/r=3/2⇒h=(3r)/2
В осевом сечении-прямоугольник с диагональю 10 см.
По т. Пифагора : 10²=(2r)²+h²
100=4r²+9r²/4
400=16r²+9r²
r²=400/25
r=4 см