∠КВС = 108° - внешний угол ΔАВС при вершине В, он равен сумме внутренних углов треугольника не смежных с ним:
∠А + ∠С = 108° (1)
∠DCB = 137° - внешний угол ΔАВС при вершине C, он равен сумме внутренних углов треугольника не смежных с ним:
∠А + ∠B = 137° (2)
Cложим выражения (1) и (2)
∠А + ∠А + ∠В + ∠С = 108° + 137°
∠А + (∠А + ∠В + ∠С) = 245° (3)
Сумма внутренних углов треугольника равна 180°, то есть
∠А + ∠В + ∠С = 180°
Тогда выражение (3) примет вид
∠А + 180° = 245°
и
∠А = 245° - 180°
∠А = 65°.
Из выражения (1):
∠С = 108° - ∠А = 108° - 65°
∠С = 43°.
Из выражения (1):
∠В = 137° - ∠А = 137° - 65°
∠В = 72°.
Объяснение:
1) ∠KON = 180° - 78° = 102° (как смежный с ∠MOK)
x = ∠OKN = (180° - 102°) / 2 = 39° (ΔKON равнобедренный)
5) Дуга SNM = 180° (стягивает диаметр)
Меньшая дуга MN = 80°, т.к. на нее опирается вписанный угол в 40°
Следовательно x = 180° - 80° = 100°
2) Т.к. AO = OB, то ΔAOB равнобедренный. А т.к. угол при вершине O равен 60°, то он равносторонний. Отсюда x = 8.
6) Меньшая дуга MK = 360° - 180° - 124° = 56°
Вписанный угол опирающийся на эту дугу равен половине ее градусной меры:
x = 56° / 2 = 28°
не знаювовррвоовора