Две прямые дороги KM и PN, которые пересекаются где-то за лесом в недоступной точке С. Нужно найти расстояние от некоторого пункта А на дороге КМ к точке С пересечения дорог. Для этого обозначили на дороге PN пункт В так, чтобы можно было измерить расстояние АВ, и определили углы ВАМ и ABN. Объясните нахождения расстояния АС. Вычислите АС, если АВ = 800 м , ∠ВАМ = 85°, ∠АВN = 52° .
Объяснение: Таким , зная определенные теоремы геометрии, можно не ходить часами с линейкой по дороге измеряя длину АС, а ВЫЧИСЛИТЬ ее по теореме синусов .
Теорема синусов :" Стороны треугольника пропорциональны синусам противолежащих углов."
. Видимый и измеряемый отрезок пути АВ=800 м. Угол ∠С вычисляется по т. о сумме углов треугольника, т.к два доступных угла можно измерить на местности с простейшей астролябии ( можно изготовить в домашних условиях) : ∠С=180°-85°-52°=43°.
Периметр-сумма всех сторон,значит а)60-(13*2)=60-26=34, значит 34:2=17-вторая сторона параллелограмма (ответ:13 и 17) б)пусть х-сторона параллелограмма,значит получим уравнение Х+Х+(4+Х)+(4+Х)=60, отсюда выразим х. 4Х=60-8, Х=13 -одна сторона, х+4=13+4=17- другая сторона. (ответ: 13 и 17) в) пусть Х-сторона параллелограмма, тогда Х+Х+3Х+3Х=60, отсюда х=7.5- одна сторона, другая сторона 3х= 3* 7,5=22.5. (ответ:7.5 и 22.5) г)пусть х и у -стороны параллелограмма,тогда составим систему Х+У=7 И 2Х+2У=60,решим систему и получим у = 11,5, х= 18.5.(ответ:11.5 и 18.5) д) решение такое же как и у задачи №3.
Две прямые дороги KM и PN, которые пересекаются где-то за лесом в недоступной точке С. Нужно найти расстояние от некоторого пункта А на дороге КМ к точке С пересечения дорог. Для этого обозначили на дороге PN пункт В так, чтобы можно было измерить расстояние АВ, и определили углы ВАМ и ABN. Объясните нахождения расстояния АС. Вычислите АС, если АВ = 800 м , ∠ВАМ = 85°, ∠АВN = 52° .
Объяснение: Таким , зная определенные теоремы геометрии, можно не ходить часами с линейкой по дороге измеряя длину АС, а ВЫЧИСЛИТЬ ее по теореме синусов .
Теорема синусов :" Стороны треугольника пропорциональны синусам противолежащих углов."