Эта задача на много проще, чем кажется. Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a, то стороны исходного треугольника будут такие (a + r, b + r, 35) стороны меньшего треугольника (a, r, 15) стороны большего (r, b, 20) и все эти три треугольника подобны между собой. отсюда a/r = 15/20 = 3/4; то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5) То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4. То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20) Исходный треугольник имеет стороны 21, 28, 35, его площадь 294; длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
Призма - правильная четырехугольная. В основании - квадрат. Диагональ наклонена к плоскости основания под углом 45°. Значит, диагональ квадрата-основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы. Длина этой гипотенузы дана в условии - 4 см Пусть х - катеты этого треугольника 4=х√2 х=4:√2=4√2:(√2*√2)=2√2 Диагональ основания квадрата =2√2 Высота призмы =2√2 Основание цилиндра - круг, ограниченный вписанной в квадрат окружностью. Радиус этой окружности равен половине стороны квадрата - основания призмы. Найдем эту сторону из формулы диагонали квадрата: d=а√2 Мы нашли d=2√2, значит сторона квадрата а=2 r= 2:2=1 Имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения r =1 Площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра. S =2πr*h= 2π*2√2 см²=4π√2 см²
Когда провели АМ получили прямоугольный треуг. Угол АВМ=30градусов. Следовательно катет, лежащий напротив угла 30 равен половине гепотенузы.
АВ=2АМ=24см