из тр-ка, образованного боковым ребром, его проекцией-половиной диагонали и высотой, найдем половину диагонали кв-та. она равна sqrt(64-32)=sqrt(32)
значит, вся диагональ равна 8*sqrt(2), т.е. сторона кв-та равна 8*sqrt(2)/sqrt(2)=8
из боковой грани имеем:тр-к равносторонний, т.о. апофема (расстояние от A до пр. KL) равна 8*sqrt(3)/2=4*sqrt(3)
P.S. задачу решил в уме, вроде верное решение. а так она уж очень простая, если Вы такую не решите-дальше Вам делать нечего... если и я неправильно решил, то и мне делать нечего)))
1) Боковая поверхность правильной пирамиды состоит из трех равнобедоенных треугольников с боковой стороной 8 см (по условию) и углам при вершине 60 градусов. Значит, углы при основании в этих тр-ках равны по (180-60)/2=60 градусов, т.е. как в основании, так и в боковых гранях лежат правильные равные треугольники со стороной 8 см.
2) Площадь боковой поверхности такой пирамиды равна сумме площадей трех равносторонних тр-ков. Площадь правильного тр-ка равна ((a^2)*sqrt(3))/4=
=(64*sqrt(3))/4=16*sqrt(3). А площадь боковой поверхности равна 3*16*sqrt(3)=
=48*sqrt(3) (см^2)
ответ: 75 (ед. площади)
Объяснение: Боковые рёбра правильной призмы перпендикулярны основанию, а в основании лежит правильный многоугольник, ⇒
∆ АВС - правильный.
По одной из формул площади треугольника Ѕ(АС1В)=0,5•АС1•ВС1•sinα
sinα=3/5 (дано).
Диагонали граней правильной призмы равны. ⇒ АС1=ВС1
На рисунке C1D делит угол пополам - С1D биссектриса ( медиана, высота) равнобедренного треугольника АС1В.
AD=BD
ВС1=BD/sin(BC1D)=BD/sin0,5α
Примем сторону основания равной 2а. Тогда BD=a.
По формуле половины угла sin0,5α=√((1-cosα)/2)
cosα=√(1-sin² α)=√(1-9/25)=4/5
sin0,5α=√((1-4/5):2)=√(1/10)=1/√10
BC1=a:1/√10 BC1=a√10
ВВ1С1С-прямоугольник. ВС1 - его диагональ.
Из ∆ ВСС1 по т.Пифагора СС1=√(BC1²-BC²)=√(10a²-4a²)=a√6
Из площади боковой поверхности площадь одной боковой грани BC•CC1=(150√6):3=50√6⇒
2a•a√6=50√6
2a²=50 ⇒ a=√(50/2)=5
АС1=ВС1=5√10
Ѕ(АС1В)=0,5•АС1•ВС1•sin(AC1B)=0,5•(5√10)²•3/5=0,5•250•3/5=75 (ед. площади)