S = p*r = 25,5 * 4 = 102
(p - полупериметр)
Эту формулу можно доказать, разбив многоугольник на тр-ки со стороной - ст. мн-ка и 3ей вершиной в центре окр. Сторона мн-ка явл-ся касат. к окр., зн, высота тр-ка к этой стороне проходит через т. кас. с окр. Высота равна радиусу и полщадь тр-ка равна половине произв. стороны (кот. явл-ся ст. мн-ка) на высоту-радиус.
Сумма площадей тр-ков равна произв. полусуммы длин сторон на радиус.
То есть произв. полупериметра на радиус впис. окр.
Проведем из центра ( общей вершины каждого получившегося треугольника) высоты к сторонам многоугольника. .
Т.к. площадь треугольника находят по формуле
S=a*h:2,
а высота здесь равна радиусу, проведенному в точку касание окружности со стороной каждого треугольника, ⇒
S=a*r:2
Площадь многоугольника равна сумме площадей всех этих треугольников с вершиной в центре вписанной в него окружности.
S=а₁*r:2+ a₂*r:2+a(n)*r:2=r*(a₁+a₂+a₃+a(n)):2=r*P:2=r*p ⇒
Площадь многоугольника равна произведению его полупериметра и радиуса окружности, вписанной в этот многоугольник.( верно, естественно, и для треугольника с вписанной в него окружностью)
S=51*4:2=102