Рассмотрим треугольное сечение конуса, проходящее через его ось. Проведем в нем высоту, и получим два прямоугольных треугольника, в каждом из которых гипотенуза - образующая - равна 10, а катеты отновятся как 3:4. Тогда длины катетов равны 6 и 8 (по теореме Пифагора, длина гипотенузы относится к длинам катетов, как 5:4:3). Объем конуса равен 1/3 произведения площади основания на высоту. Высота равна 8, площадь основания равна pi*36, тогда объем равен 36*8*pi/3=96pi. Объем куба равен этому же числу, тогда ребро куба равно кубическому корню из 96pi.
Если многоугольник может быть невыпуклым, и может самопересекаться, то решение следующее:
Так как в единичном квадрате наибольшее расстояние между двумя точками равно sqrt(2), то каждая сторона многоугольника меньше sqrt(2). Периметр квадрата 4, а многоугольника 28. Тогда у него не меньше [28/sqrt(2)]+1=20 сторон.
Такой многоугольник можно получить, если рассмотреть ломаную, каждое звено которой немного меньше диагонали квадрата, и равно 1.4. Двадцатое звено заканчивается там. где начинается первое.
Площа основи= π*радіус в квадраті=9π
Бічна площа=довжина кола основи*висоту=2π*радіус*висота=30π