Объяснение:
а) sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
sin(180°-60°)=sin(180°)cos(60°)-cos(180°)sin(60°)=0+√3/2=√3/2
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
cos(180°-30°)=cos(180°)cos(30°)+sin(180°)sin(30°)=-√3/2+0=-√3/2
б) cos(135°)=cos(180°-45°)=cos(180°)cos(45°)+sin(180°)sin(45°)=-√2/2
sin(150°)=sin(180°-30°)=sin(180°)cos(30°)-cos(180°)sin(30°)=1/2
ctg(135°)=ctg(180°-45°)=-ctg(45°)=-1
в) cos(150°) (смотря из (а)) = -√3/2
ctg(150°)=ctg(180°-30°)=-ctg(30°)=-√3
cos(150°)>ctg(150°)
sin(150°)=sin(180°-30°)=sin(180°)cos(30°)-cos(180°)sin(30°)=1/2
sin(135°)=sin(180°-45°)=sin(180°)cos(45°)-cos(180°)sin(45°)=√2/2
sin(150°)<sin(135°)
г) смотря из примеров:
cos(30°)=√3/2
cos(135°)=-√2/2
cos(150°)=-√3/2
cos(30°; 135°; 150°)
sin(30°)=1/2
sin(135°)=√2/2
sin(150°)=1/2
sin(30°)=sin(150°)
sin(135°; 30°; 150°)
ctg(30°)=√3
ctg(135°)=-1
ctg(150°)=-√3
ctg(√3; -1; -√3)
Відповідь:
АК/KC=1/2
S△AEB/S□EBCD=1/3
Пояснення:
Пусть пересечение АС с ВЕ точка К
Тогда рассмотрим △АКЕ и △СКВ, они подобние по трем углам /_ВКС=/_ЕКА как противоположние,/_КАЕ=/_КСВ и /_СВК=/_КЕА как внутриние разносторонние угли паралельних прямих и секущей. Соотношение сторон в треугольниках АК/KC=AE/BC=1/2
Через точку Е провелем прямую, паралельную АВ, ее пересечением с ВС будет точка Е1, ВЕ1=Е1С
△АВЕ=△ВЕЕ1 так как их сторони равни и прямая ЕЕ1 делит паралелограм пополам, поетому S△AEB=1/2S□AEE1B=1/4S□ABCD
S□EBCD=S□ABCD-S△AEB
S△AEB/S□EBCD=1/3
Радиус окружности, по которой шар касается треугольника равен:
r = a√3 / 2 = (6√3)*√3 / 2 = 3 см (это радиус вписанной окружности).
Тогда расстояние от центра шара до плоскости треугольника находится: H = √(R² - r²) = √(5²-3²) = √(25-9) = √16 = 4 см.