а) В случае центральной симметрии относительно начала координат, все координаты меняют знак на противоположный:
А (2; 4; 8) - А (-2; -4; -8)
В (4; -3; 10) - В (-4; 3; -10)
С (11; -7; -5) - С (-11; 7; 5)
б) В случае осевой симметрии относительно координатной оси, все координаты, кроме той, которая соответствует данной оси, меняют свой знак на противоположный:
Для оси Ox:
A (2; 4; 8) - A (2; -4; -8)
B (4; -3; 10) - B (4; 3; -10)
C (11; -7; -5) - C (11; 7; 5).
Для оси Оу:
А (2; 4; 8) - А (-2; 4; -8)
В (4; -3; 10) - В (-4; -3; -10)
С (11; -7; -5) - С (-11; -7; 5)
Для оси Оz:
A (2; 4; 8) - A (-2; -4; 8)
B (4; -3; 10) - B (-4; 3; 10)
C (11; -7; -5) - C (-11; 7; -5)
в) В случае зеркальной симметрии относительно координатной плоскости,меняется только та координата, которая не относится к данной плоскости:
В данном решении я покажу, как решают многие и многие, да , решение будет правильным, но так решать не нужно, нужно думать головой. И потом покажу, как же , в принципе, НУЖНО решать такие задачи. итак, пусть одна сторона будет а. Тогда другая, естественно , будет а+7. (ведь а+7 -а =7 , как в условии) т.к. стороны и диагональ образуют прямоугольный треугольник, то по т.Пифагора а²+(а+7)²=13² а²+а²+2*7*а+7²=13² 2а²+14а-120=0 а²+7а-60=0 D=49+4*60=17² a1=5 a2=-12 отрицательное не подходит, т.к. длина - положительное значение
т.е а=5, а+7=5+7=12 S=5*12=60 Но так решать НЕ НУЖНО!
у нас выше получилось выражение а²+7а-60=0 кстати, все числа нужно было перенести вправо, тогда получается а²+7а=60 дальше а*(а+7)=60 но что такое а и а+7 ? Это стороны, значит, произведение равно площади и равно 60 . Вот и все.
То, что указанные двугранные углы равны, говорит о том, что боковые грани одинаково наклонены к плоскости основания, значит основание высоты тетраэдра лежит в центре вписанной в основание окружности. Площадь боковой поверхности пирамиды: Sб=p·l, где р - полупериметр, l - апофема боковой грани. р=(20+21+29)/2=35 см. r=S/p, где S - площадь основания. По формуле Герона S=√(p(p-a)(p-b)(p-c))=√(35(35-20)(35-21)(35-29))=210 cм². r=210/35=6 см. В треугольнике, образованном найденным радиусом, высотой пирамиды и апофемой, угол между апофемой и радиусом равен 60° (по условию). Апофема: l=r/cos60=6/0.5=12 см. Sб=35·12=420 см² - это ответ.
а) В случае центральной симметрии относительно начала координат, все координаты меняют знак на противоположный:
А (2; 4; 8) - А (-2; -4; -8)
В (4; -3; 10) - В (-4; 3; -10)
С (11; -7; -5) - С (-11; 7; 5)
б) В случае осевой симметрии относительно координатной оси, все координаты, кроме той, которая соответствует данной оси, меняют свой знак на противоположный:
Для оси Ox:
A (2; 4; 8) - A (2; -4; -8)
B (4; -3; 10) - B (4; 3; -10)
C (11; -7; -5) - C (11; 7; 5).
Для оси Оу:
А (2; 4; 8) - А (-2; 4; -8)
В (4; -3; 10) - В (-4; -3; -10)
С (11; -7; -5) - С (-11; -7; 5)
Для оси Оz:
A (2; 4; 8) - A (-2; -4; 8)
B (4; -3; 10) - B (-4; 3; 10)
C (11; -7; -5) - C (-11; 7; -5)
в) В случае зеркальной симметрии относительно координатной плоскости,меняется только та координата, которая не относится к данной плоскости:
Для плоскости хОу:
А (2; 4; 8) - А (2; 4; -8)
В (4; -3; 10) - В (4; -3; -10)
С (11; -7; -5) - С (11; -7; 5)
Для плоскости хОz:
A (2; 4; 8) - A (2; -4; 8)
B (4; -3; 10) - B (4; 3; 10
C (11; -7; -5) - C (11; 7; -5)
Для плоскости уОz:
A (2; 4; 8) - A (-2; 4; 8)
B (4; -3; 10) - B (-4; -3; 10)
C (11; -7; -5) - C (-11; -7; -5)