6. ответ: 70 градусов (угол D в треугольнике DBC равен 38 градусов как внешний угол треугольника ADE; значит по сумме углов треугольника угол С равен 70) 7. Треугольник КРЕ равен треугольнику DPK (по трём сторонам), значит угол КЕР равен углу KDP, тогда угол МРЕ равен углу МРD (как смежные углы с равными углами), тогда треугольник МРЕ равен треугольнику MPD (по двум сторонам и углу между ними), значит и углы KDM и KEM равны.
Октаэдр в задаче можно представить себе следующим образом. Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра. К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0) то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно. Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c. Вот тут самая важная часть решения. "С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба. Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней. В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра). То есть получается такая задача для нахождения b (при заданном c) "В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2". Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1); Отсюда b = 2√3; b^2 = 12;
1.Найдите площадь квадрата, если его периметр равен 100 см. У квадрата 4 стороны, и они равны, поэтому 100:4=25 одна сторона. Площадь =25*25=625 м2
2.Периметр прямоугольника равен 80 см, а длина в 3 раза больше ширины. Найдите его площадь? 80:2=40 см это суммы ширины и длины так как длина в3 раза больше, то это 3 части, а ширина 1 часть, всего 4 части 40:4=10 см это одна счасть, то есть ширина 10*3=30 см длина 10*30=300 см2 площадь
3.Стороны прямоугольника равны 25 см и 4 см. Каковы стороны равновеликого ему прямоугольника, у которого стороны равны? 25*4=100 см2 площадь √100=10 см сторона прямоугольника
4. Найдите периметр прямоугольника если его площадь равна 128 см², а длины его сторон относятся как 1 : 2. пусть одна сторона х, другая 2х 1х*2х=128 2х²=128 х²=64 х=8 см ширина 8*2=16 см длина 2*(8+16)=2*24=48 см периметр
5. Найдите стороны квадрата, площадь которого равна площади прямоугольника со сторонами 8 см и 98см. 8*98=784 см2 площадь прямоугольника √784=28 см стороны квадрата
6. Как измениться площадь прямоугольника, если его стороны уменьшить в 3 раза. х,у стороны прямоуг. х/3*у/3=ху/9 площадь уменьшится в 9 раз.
7. Треугольник КРЕ равен треугольнику DPK (по трём сторонам), значит угол КЕР равен углу KDP, тогда угол МРЕ равен углу МРD (как смежные углы с равными углами), тогда треугольник МРЕ равен треугольнику MPD (по двум сторонам и углу между ними), значит и углы KDM и KEM равны.