Если в треугольнике DEF угол F = 30 градусов , то катет DE, лежащий против этого угла ревен половине гипотенузы EF, т.е. EF = 2 DE или DE= 1/2 EF.
По теореме Пифагора:
DF^2+DE^2 = EF^2, пусть DE = х, тогда EF = 2х, а DF = 3 дм поусловию
решим уравнение : 3^2 + х^2 = (2х)^2
9 = 4x^2 - x^2
9 = 3x^2
3 = x^2
x =корень из 3 ,
значит DE = корень из 3 , EF = 2 корня из 3,
ответ: корень из 3, 2 корня из 3
СВ=12
Объяснение:
1)Продолжим медиану CМ за точку М до точки D так, чтобы было выполнено равенство CМ = МD, и соединим полученную точку D с точками A и B .
Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограмма получаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:
ДС=АВ, 2СМ=АВ, СМ=1/2*АВ, АВ=24
2)ΔАВС-прямоугольный. По свойству катета ,лежащего против угла 30 градусов : СВ=1/2*АВ, СВ=12