С точки плоскости проведен наклонную длиной 8 см. Найти угол, который образует наклонную плоскость, если перпендикуляр, проведенный с точки плоскости, равна см, и найти длину проекции наклонной на плоскость
Пусть M- cередина АС, N - середина АВ. Продолжим ВМ на расстояние ВМ, получим Q, продолжим CN на расстояние CN, получим Р. Рассмотрим четырехугольник APBC, в нем диагонали РС и АВ точкой пересечения N делятся пополам, значит, это параллелограмм (признак такой), значит АР параллельна ВС (определение параллелограмма). Рассмотрим четырехугольник ABCQ, в нем диагонали AС и ВQ точкой пересечения M делятся пополам, значит, это параллелограмм (признак такой), значит АQ параллельна ВС (определение параллелограмма). Итак, в точке А проведены две прямые АР и АQ, параллельные ВС. По 5 постулату Евклида (аксиома параллельности) через точку вне прямой можно провести единственную прямую, параллельную данной, значит, точки А, Р, Q лежат на одной прямой
1) Уравнение плоскости, проходящей через точку перпендикулярно векторуДана точка и вектор . То есть и прямая и точка должны иметь соответствующие координаты. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору: . . Раскрыв скобки и приведя подобные, получаем уравнение плоскости общего вида Ax + By + Cz + D = 0. Для построения плоскости её уравнение общего вида надо преобразовать в уравнение в отрезках.
Значения (-D/A) = a, (-D/B) = b, (-D/C) = это и есть отрезки на осях, через которые проходит плоскость.
Рассмотрим четырехугольник APBC, в нем диагонали РС и АВ точкой пересечения N делятся пополам, значит, это параллелограмм (признак такой), значит АР параллельна ВС (определение параллелограмма).
Рассмотрим четырехугольник ABCQ, в нем диагонали AС и ВQ точкой пересечения M делятся пополам, значит, это параллелограмм (признак такой), значит АQ параллельна ВС (определение параллелограмма).
Итак, в точке А проведены две прямые АР и АQ, параллельные ВС. По 5 постулату Евклида (аксиома параллельности) через точку вне прямой можно провести единственную прямую, параллельную данной, значит, точки А, Р, Q лежат на одной прямой