ответ: 36см
Дано: ABCD- прямоугольник, ∠ВОС=120°, АВ=18см
Найти АС-?
Решение: Свойства диагоналей прямоугольника:
Диагонали прямоугольника равны и в точке пересечения делятся пополам.
АО=ВО.
Вариант 1 :
∠ВОС и ∠АОВ- смежные, поэтому ∠АОВ=180°-∠ВОС=180°-120°=60°
Рассмотрим ΔАОВ, АО=ВО, соответственно ∠ОАВ=∠ОВА, как углы при основании равнобедренного треугольника.
По теореме о сумме трех углов треугольника 2*∠ОАВ+∠АОВ=180°,→
∠ОАВ=(180°-∠АОВ):2=(180°-60°)=60°
следовательно ΔАОВ-равносторонний АО=18см
АС=АО+ОС=2АО=2*18=36(см)
Вариант 2.
Рассмотрим ΔАОВ. ∠ВОС=120°- внешний угол при вершине равнобедренного треугольника( АО=ВО)
∠ОАВ+∠ОВА=∠ВОС;
2*∠ОАВ=120°;
∠ОАВ=60°, следовательно ΔАОВ-равносторонний АО=18см
АС=АО+ОС=2АО=2*18=36(см)
Даны три вершины а(2;-8;9),в(-1;3;4) с(-4;6;3) параллелограмма АВСД.
Находим середину диагонали АС (это центр параллелограмма - точка О).
О ((2-4)/2= -1; (-8+6)/2= -1; (9+3)/2= 6) = (-1; -1; 6).
Вершину Д находим как симметричную точке В относительно центра.
хД = 2хО - хВ = 2*(-1) - (-1) = -2 + 1 = -1,
yД = 2уО - уВ = 2*(-1) - 3 = -2 - 3 = -5,
zД = 2zО - zВ = 2*6 - 4 = 8.
ответ: Д(-1; -5; 8).
Можно применить другой
У параллелограмма ВА и СД имеют одинаковую разность координат по осям Ох и Оу.
А(2;-8;9), В(-1;3;4), С(-4;6;3).
Для ВА это равно (3; -11; 5).Прибавляем эту разность к координатам точки С:
Д = (-4+ 3 = -1; 6 - 11 = -5, 3 + 5 = 8).
ответ: Д(-1; -5; 8).