М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Top4ik80
Top4ik80
02.03.2021 02:05 •  Геометрия

те три задание первого варианта просто тестово . Чисто буквы.


те три задание первого варианта просто тестово . Чисто буквы.

👇
Открыть все ответы
Ответ:
emy2512
emy2512
02.03.2021

1. Радиус сферы равен половине диаметра, R = 25 см.

Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.

Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:

АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм

Линия пересечения сферы плоскостью - окружность. Ее длина:

C = 2π·AC = 2π · 20 = 40π см

2. Сечение шара - круг. Его площадь равна 36π см²:

Sсеч = π · r² = 36π

r² = 36

r = 6 см

Из прямоугольного треугольника АОС по теореме Пифагора:

ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.

3. Радиус большого круга равен радиусу шара.

Площадь сечения:

Sсеч = πr²

Площадь большого круга:

S = πR², R = √(S/π)

Sсеч / S = πr² / (πR²) = r²/ R²

По условию Sсеч / S = 3 / 4, ⇒

r²/ R² = 3 / 4, тогда r/R = √3/2

В прямоугольном треугольнике АОС r/R - это косинус угла А.

Тогда ∠А = 30°.

Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен

OC = R/2 = √(S/π) / 2 = √S/(2√π)

4. Радиус шара равен половине диаметра:

R = 2√3 см

Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому

ОС = r = R/√2 = 2√3 / √2 = √6 см

Sсеч = πr² = π · (√6)² = 6π см²

4,7(34 оценок)
Ответ:
supernatural54
supernatural54
02.03.2021

S = 1,125 ед².

Объяснение:

В единичном кубе сторона куба = 1.

Диагонали граней равны √2.

Сечение проходит через вершины А и С по диагонали АС и по прямой, параллельной АС (две параллельные плоскости ABCD и A1B1C1D1 пересекаются по параллельным прямым), проходящей через точку F - середину ребра С1D1.

Следовательно, сечение - равнобедренная трапеция AEFC с основаниями АС=√2 и EF=√2/2 (EF - средняя линия треугольника А1C1D1).

Для определения площади трапеции найдем ее высоту.

Проведем ЕH перпендикулярно АС. В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований. АН = (АС - EF)/2 = (√2 - √2/2)/2 = √2/4 ед.

Из прямоугольного треугольника AА1Е по Пифагору:

АЕ = √(1²+(1/2)²) = √5/2 ед.

Из прямоугольного треугольника AЕН по Пифагору:

ЕН = √(АЕ² - АН²) = √((√5/2)²- (√2/4)²) = 3√2/4 ед.

Saefc = (1/2)·(AC+EF)·EH = (1/2)·(√2+√2/2)· (3√2/4) =>

Saefc = 9/8 = 1 1/8 = 1,125 ед².


Умоляю изобразите сечение единичного куба проходящее через вершины a, с и середину ребра c1d1. найди
4,4(98 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ