Сечение параллелепипеда ABCDA'B'C'D' проведено через середины ребер AB, AD и A'B'. Каким многоугольником является это сечение? Сделайте рисунок и отметьте равные стороны этого многоугольника. Главное расписать
1)Углом наз. часть плоскости ограниченная двумя лучами; 2)Угол=180 3)Фигуры, которые совпадают при наложении называются РАВНЫМИ 4)Точка находящаяся на отрезке и равноудаленная от его концов! 5)Проходящий через вершину угла и делящий его пополам. 6)Два угла называются смежными, если у них одна сторона общая, а другие стороны являются дополнительными лучами. сумма смежных углов равна 180°.
7)Вертикальные углы - два угла, у которых стороны одного являются продолжениями сторон другого. Вертикальные углы равны.
1. гипотенузу найдем по теореме Пифагора C^2=√5^2+2^2=5+4=9 C=3 см
2. катет найдем по теореме Пифагора А^2=2^2-√3^2=4-3=1 A=1 см
3. в прям-ом тр-ке, согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов, поэтому гипотенуза больше любого из катетов. В данном случае АС является гипотенузой, поэтому противолежащий ей угол В является прямым.
4. В равностороннем тр-ке высота, проведенная к любой стороне, является также его медианой и биссектрисой, и поэтому делит тр-к на два равных прямоугольных тр-ка с углами 30°, 60°, 90°. Катет, противолежащий углу 30°, равен половине гипотенузы. Обозначим его через х, тогда гипотенуза равна 2х. Найдем неизвестные стороны по теореме Пифагора, решив уравнение с одним неизвестным. √3^2=(2x)^2-x^2=4x^2-x^2=3x^2 3=3x^2 x^2=3/3 x=1 2x=2 ответ: 2
5. обозначим один катет 5х, другой 12х, гипотенуза 26. Применим теорему Пифагора, решим уравнение с одним неизвестным 26^2=(5x)^2+(12x)^2 676=25x^2+144x^2 676=169x^2 x^2=4 x=2 Значит катеты тр-ка равны 10 см и 24 см. Периметр тр-ка равен 26+10+24=60 см
5)Проходящий через вершину угла и делящий его пополам. 6)Два угла называются смежными, если у них одна сторона общая, а другие стороны являются дополнительными лучами. сумма смежных углов равна 180°.
7)Вертикальные углы - два угла, у которых стороны одного являются продолжениями сторон другого. Вертикальные углы равны.
8)Те, между которыми 90 градусов.