М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alpet03
alpet03
25.11.2022 15:40 •  Геометрия

Восновании пирамиды лежит прямоугольный треугольник с катетом l и прилежащим острым углом b. определите объем пирамиды,если все ребра пирамиды наклонены к ее основанию под углом l. подробный ответ.

👇
Ответ:
В основании пирамиды лежит прямоугольный треугольник с катетом а и прилежащим острым углом бета. определите объем пирамиды если все боковые ребра пирамиды наклонены к её основанию под углом альфа

Решение в приложении
Восновании пирамиды лежит прямоугольный треугольник с катетом l и прилежащим острым углом b. определ
4,5(80 оценок)
Открыть все ответы
Ответ:
igcifxitsizoufzoyuc
igcifxitsizoufzoyuc
25.11.2022
∠С = ∠C1, ∠А = ∠А1, ∠В = ∠В1ВО = ОС = В1О1 = О1С1, т.к. АО и А1О1 — медианы, и ВС = В1С1.В ΔАОС и ΔА1О1С1: АС = А1С1, ОС = О1С1, ∠С = ∠С1. Таким образом, ΔАОС = ΔА1О1С1 по 1-му признаку, откуда АО = А1О1. 2Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.
∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.
В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.
Откуда AK = A1K1.
Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.
∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.
В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.
Откуда AK = A1K1.
4,7(7 оценок)
Ответ:
marinichnatash
marinichnatash
25.11.2022
Условие перпендикулярности векторов
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Скалярное произведение векторов: (m,a)=Xm*Xa+Ym*Ya+Zm*Za (1).
В нашем случае координаты вектора а={2;1;1}, координаты вектора
b={1;1;2} и тогда:(m,a)=Xm*2+Ym*1+Zm*1 =0.  Аналогично
(m,b)=Xm*1+Ym*1+Zm*2 =0 (2).
Единичный вектор имеет длину (модуль) равную 1, то есть
|m| = √(Xm²+Ym²+Zm²)=1. Возведем в квадрат:
 Xm²+Ym²+Zm²)=1 (3).
Из (2) вычтем (1): Xm-Zm=0 или Xm=Zm, тогда Ym= -3Xm.
Подставим эти значения в (3): Xm²+9Xm²+Xm²)=1  => Xm=Zm=1/√11, Ym=-3/√11.
Итак, искомый единичный вектор m = {1/√11;-3/√11;1/√11}. Но есть и противоположно направленный ему вектор -m, который также перпендикулярен векторам а и b.  Противоположно направленные вектора, это вектора, координаты которых пропорциональны и коэффициент пропорциональности ОТРИЦАТЕЛЬНЫЙ.
Коэффициент пропорциональности равен -1.
Значит вектор -m = {-1/11;3/11;-1/11}.

Второй вариант:
Векторное произведение векторов a и b по определению - вектор, перпендикулярно направленный плоскости параллелограмма, образованного векторами а и b. Находим вектор по формуле:
           | i  j  k |
(a*b)= |2 1  1 |  =  i (aybz - azby) - j (axbz - azbx) + k (axby - aybx)  или
           |1 1  2 |
(a*b)= i(2-1)-j(4-1)+k(2-1) = i -3j +k.  то есть мы получили вектор (a*b) с координатами (a*b)={1;-3;1}.
Модуль (длина) этого вектора равна |a*b| = √(1+9+1) =√11.
Мы знаем, что единичный вектор - это вектор, коллинеарный данному, но имеющий модуль, равный 1. То есть каждую координату необходимо разделить на модуль вектора |a*b|.  Это вектор
m={1/√11; -3/√11; 1/√11}  и противоположный ему вектор
-m={-1/√11; 3/√11; -1/√11}.
4,7(13 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ