М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
777Leha777
777Leha777
12.04.2021 00:26 •  Геометрия

В правильной треугольной пирамиде боковое ребро равно 16 дм и составляет с плоскостью основания угол 60 градусов. Найдите площадь полной поверхности пирамиды.

👇
Ответ:
mixa342
mixa342
12.04.2021

ответ: Sпол=377,6дм²

Объяснение: в основании правильной четырёхугольной пирамиды лежит квадрат поэтому все стороны основания равны.

ответ на фото


В правильной треугольной пирамиде боковое ребро равно 16 дм и составляет с плоскостью основания угол
В правильной треугольной пирамиде боковое ребро равно 16 дм и составляет с плоскостью основания угол
4,6(28 оценок)
Открыть все ответы
Ответ:
nikitasonar
nikitasonar
12.04.2021
Любая вписанная трапеция равнобокая, так как углы, опирающиеся на одну дугу, должны быть равны. Обозначим основания трапеции за 2x и 2y. Тогда средняя линия равна (2x + 2y)/2 = (x + y),

Уравнения:
\begin{cases}
\dfrac{\sqrt{100-x^2}}{\sqrt{100-y^2}}=\dfrac43\\
x+y=\sqrt{100-x^2}+\sqrt{100-y^2}
\end{cases}

Решаем первое уравнение.
\dfrac{\sqrt{100-x^2}}{\sqrt{100-y^2}}=\dfrac43\\
\dfrac{100-x^2}{100-y^2}=\dfrac{16}9\\
100-x^2=\dfrac{1600}9-\dfrac{16}9y^2\\
x^2=\dfrac{16}9y^2-\dfrac{700}9

Подставляя во второе уравнение и немного мучаясь, можно получить ответ x = 6, y = 8.

Уравнения будут выглядеть немного лучше, если обозначить куски высоты как 4x и 3x. Тогда уравнение будет выглядеть следующим образом:
2(\sqrt{100-16x^2}+\sqrt{100-9x^2})=7x\\
4(200-25x^2+2\sqrt{(100-16x^2)(100-9x^2)})=49x^2\\
x^2=t:\quad 149t-800=2\sqrt{100^2-25t+144t^2}\\
\dots
Получающееся квадратное уравнение радует количеством вычислений.

Наконец, можно обозначить неизвестными углы 
H1CO = x и H2DO = y
Тогда система получится простой:
\begin{cases}
4\sin x=3\sin y\\
\cos x+\cos y=\sin x+\sin y
\end{cases}
Но решать её всё равно неинтересно.

ответ. 12, 16.

Центр окружности, описанной около трапеции, делит ее высоту в отношении 3: 4. найти основания трапец
4,7(82 оценок)
Ответ:

Соединив точки А и Р, получим прямоугольную трапецию АРСД. 

Диаметр вписанной в трапецию окружности равен ее высоте, здесь - стороне АВ=СД, т.е. 4.  Радиус r=2 см

Проведем из центра О радиусы в точки касания окружности с ВС и СД. Отрезки касательных, проведенные из одной точки, равны. 

КС=СЕ=r=2 см.

ВК=ВС-КС=5-2=3 см

Обозначим  М середину АВ, Е - середину СД. 

МО=ВК=3 см

АМ=СЕ=ДЕ=4:2=2 см

По т.Пифагора или как гипотенуза равнобедренного ∆ ОЕД –

ОД=2√2.

Р (АМОД)=АД+АМ+МО+ОД=5+2+3+2√2=(10+2√2) см или ≈ 12, 828 см


Впрямоугольнике авсд, ав =4 см, вс= 5 см. точка р принадлежит отрезку вс. в четырехугольник арсд впи
4,5(28 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ